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Objective: The current study tested whether neural activity in response to messages designed to help
smokers quit could predict smoking reduction, above and beyond self-report. Design: Using neural
activity in an a priori region of interest (a subregion of medial prefrontal cortex [MPFC]), in response to
ads designed to help smokers quit smoking, we prospectively predicted reductions in smoking in a
community sample of smokers (N ! 28) who were attempting to quit smoking. Smoking was assessed
via expired carbon monoxide (CO; a biological measure of recent smoking) at baseline and 1 month
following exposure to professionally developed quitting ads. Results: A positive relationship was
observed between activity in the MPFC region of interest and successful quitting (increased activity in
MPFC was associated with a greater decrease in expired CO). The addition of neural activity to a model
predicting changes in CO from self-reported intentions, self-efficacy, and ability to relate to the messages
significantly improved model fit, doubling the variance explained (Rself-report

2 ! .15, Rself-report
2

" neural activity !
.35, Rchange

2 ! .20). Conclusion: Neural activity is a useful complement to existing self-report measures. In
this investigation, we extend prior work predicting behavior change based on neural activity in response to
persuasive media to an important health domain and discuss potential psychological interpretations of the
brain–behavior link. Our results support a novel use of neuroimaging technology for understanding the
psychology of behavior change and facilitating health promotion.
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We are exposed to messages designed to change our health
behaviors nearly every day; parents and friends may encourage us,
doctors may instruct us, and public health media campaigns try to
persuade us to make healthier lifestyle choices. In attempting to

understand the circumstances under which these types of messages
are likely to result in behavior change, prominent persuasion and
behavior change theories have demonstrated that people’s self-
reported intentions and self-efficacy predict message-consistent
behavior change (Ajzen, 1991; Chaiken, Liberman, & Eagly,
1989; Fishbein & Ajzen, 1975; Fishbein et al., 2001; Petty &
Cacioppo, 1986; Rosenstock, 1966; Strecher & Rosenstock, 1997).
However, models based on self-report measures have limitations.
For example, one recent meta-analysis reported that the theory of
planned behavior accounted for 27% of the variability in people’s
behavior, leaving nearly three quarters of the variability unex-
plained (Armitage & Conner, 2001), and a separate meta-analysis
reported a slightly weaker average intention–behavior link (Webb
& Sheeran, 2006). Presumably, predictive efficacy is partially
limited by moderating events and changing circumstances that
occur after predictions can be made and thus cannot be accounted
for in such models. Nevertheless, it is also likely that a share of
unexplained variance could be captured with new measurement
instruments that do not share some of the biases associated with
self-report methods.

Neuroimaging as a Tool to Predict Behavior Change

Some of the difficulty in predicting behavior change following
persuasive messages, and consequently identifying messages that
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are likely to have the greatest impact on health behavior change,
may stem from limitations in people’s ability to produce accurate
self-reports in the context of laboratory or focus group settings or
in retrospective surveys. For example, limitations and biases may
arise because of social desirability effects (Booth-Kewley, Larson,
& Miyoshi, 2007; Edwards, 1953) or when people do not have
conscious access to the factors that lead them to change their
behaviors (Nisbett & Wilson, 1977). Furthermore, when asked,
people may confabulate reasons that did not actually factor in the
behavior change (Wilson & Nisbett, 1978). Likewise, introspec-
tion during stimulus presentation may change the experience (Wil-
son & Schooler, 1991).

Among methods for circumventing such challenges (Hurlburt &
Heavey, 2001; Nederhof, 2006), functional magnetic resonance
imaging (fMRI) provides a way of monitoring neural responses to
persuasive messages in the moment that effects initially take hold
(Lieberman, 2010). As such, it provides a complementary data
source on how people process messages (Chua, Liberzon, Welsh,
& Strecher, 2009; Chua, Polk, Welsh, Liberzon, & Strecher, 2009)
that may allow us to more accurately predict behavior change
following message exposure (Falk, Berkman, Harrison, Mann, &
Lieberman, 2010). Neuroimaging has been used successfully in
past investigations to link neural activity during cognitive tasks to
changes in substance use behaviors (Brewer, Worhunsky, Carroll,
Rounsaville, & Potenza, 2008; Kosten et al., 2006; Paulus, Tapert,
& Schuckit, 2005), as well as lower level attention, memory, and
reward processes involved in smoking and smoking cessation
(Brody et al., 2002, 2007; Mendrek et al., 2006; Weinstein & Cox,
2006; Xu et al., 2007), but has not previously been used to predict
changes in smoking reduction in response to persuasive messages.
In the context of assessing responses to persuasive messages,
understanding the neural precursors of behavior change may ulti-
mately allow us to select among messages those that are most
likely to show specific, desired effects and are ultimately more
effective in helping people change their behaviors.

The Present Approach

As a starting point, one recent neuroimaging study demonstrated
that neural activity during initial exposure to persuasive messages
can predict variability in behavior change that is not predicted by
self-report measures such as attitudes and intentions (Falk et al.,
2010). More specifically, Falk and colleagues (2010) reported that
activity in a neural region associated with self-related processing
(a subregion of medial prefrontal cortex [MPFC]) was associated
with changes in sunscreen use from the week before the scan to the
week after, above and beyond people’s attitudes and intentions to
use sunscreen.

In the present study, we extended this work to the context of
antitobacco messages and subsequent smoking reduction. This
represents an important step forward theoretically, given that
smoking reduction is a more motivationally relevant and complex
behavior change than increased sunscreen use. This also represents
an important practical step, given that smoking is the leading cause
of preventable morbidity and mortality in the United States and as
such is a public health priority (Centers for Disease Control and
Prevention, 2008, 2010; Office of the Surgeon General, 2004).
Evidence suggests that mass media campaigns can be used to
facilitate quitting (National Cancer Institute, 2008; Popham et al.,

1993; Vallone et al., 2010). However, at present the underlying
mechanisms that lead messages to be successful are not fully
understood.

From a theoretical standpoint, we were also interested in
whether neural activity could predict independent variance above
and beyond self-report measures. We chose to examine intentions
and self-efficacy as self-report variables that have been demon-
strated to predict substantial variance in behavior change and are
present in several major theories of health behavior change (Fish-
bein et al., 2001). Interrogating neural activity simultaneously with
known self-report precursors of behavior change (e.g., intention
and self-efficacy) will not only allow us to gain a deeper under-
standing of the brain–behavior link, but may also help us under-
stand the interrelationships between these psychological constructs
and behavioral outcomes of interest.

In addition, given that Falk and colleagues (2010) speculated
that activity in MPFC might index either an explicit or implicit
connection between persuasive messages designed to change be-
havior and the self, we included a measure of participants’ explicit
ability to relate to the messages. This measure may help us narrow
our understanding of whether the variability in behavior change
explained by neural activity in our MPFC region of interest (ROI)
is reducible to information obtainable through explicit self-report.

Lastly, self-reports of smoking behavior (either through global
recall or through timeline follow-back) are prone to a number of
cognitive biases (Hammersley, 1994; Pierce, 2009; Shiffman,
2009). For example, smokers exhibit a tendency to report that they
have smoked numbers of cigarettes that cluster around certain
round numbers (e.g., 10, 20, the number of cigarettes in a pack),
even though this is not reflective of actual behavior (Klesges,
Debon, & Ray, 1995). Likewise, bias may arise because of self-
presentation concerns or other factors such as people’s motivation
to appear consistent with their stated intentions (Cialdini & Gold-
stein, 2004). Therefore, although having limitations of its own
(discussed in the Limitations section of this article), we elected to
use a biological indicator of recent smoking (expired carbon mon-
oxide [CO]) as our primary dependent variable.

By combining data obtained through fMRI, self-report surveys,
and biological indicators of cigarette smoking, we were able to link
neural responses during exposure to health messages to the real-
world behaviors that follow. More specifically, we demonstrate
that activity in an a priori region of MPFC can be used to explain
variability in expired CO in the context of smoking reduction.

Method

Participants

Thirty-one right-handed participants (15 women) were recruited
from the American Lung Association’s Freedom From Smoking
program, an 8-week professional-led, group-based smoking cessa-
tion program, that was standard to all subjects (aside from recruit-
ment, there was no connection between the program and this
study). Two male participants were excluded from behavioral
follow-up analyses because of missing endpoint data, and one male
participant was excluded because of excessive head motion during
the fMRI scanner session, resulting in a final sample of 28 partic-
ipants.
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All participants were heavy smokers who intended to quit.
Participants were considered heavy smokers if they smoked at
least 10 cigarettes per day, 7 days per week, for at least 1 year, and
had urinary cotinine levels of at least 1,000 ng/ml. On average,
participants smoked 21 cigarettes per day (SD ! 10.0). In addition
to enrollment in a cessation program, quitting intentions were
assessed via scores greater than 9 of 10 on the Contemplation
Ladder, a single-item measure of intentions to quit (Biener &
Abrams, 1991), thus holding baseline intentions to quit relatively
constant across this sample. Participants met standard criteria for
fMRI scanning; participants were excluded if they were left-
handed, did not speak English, were pregnant or claustrophobic, or
had any other condition contraindicated for MRI. Participants were
also excluded if they consumed more than 10 alcoholic drinks per
week or had any of the following conditions: dependence on
substances other than nicotine, dependence on substances within 1
year of the scan date, neurological or psychiatric disorders, or
cardiovascular disease. Complete methodological details and be-
havior change data are available in Berkman, Dickenson, Falk, and
Lieberman (in press).

Participants varied in age from 28 to 69 years (M ! 45 years,
SD ! 10.1), and had been smoking from 11 to 53 years (M ! 28.4
years, SD ! 2.0). Participants were ethnically diverse: 50% Cau-
casian, 25% Hispanic, 21% African American, and 4% other; and
socioeconomically diverse: participant mean annual income !
$31,070 (range ! $0–$200,000); 57% received some form of
government assistance; 60% completed some form of college, and
28% received a bachelor’s degree or higher. Participants were paid
$80 for completion of the fMRI portion of the study. All partici-
pants provided written informed consent that was approved by the
University of California, Los Angeles Institutional Review Board.

Materials and Procedure

On arrival, participants gave consent and were screened for use
of following illicit drugs with a urine test (Syva RapidTest d.a.u.
5, Dade Behring Inc., Cupertino, CA): amphetamines, cocaine,
marijuana, opiates, and PCP.

Baseline smoking measures. Participants completed self-
report measures of smoking history, nicotine dependence, crav-
ings, and intentions to quit, as well as exhaled CO, a measure of
recent smoking (Microsmokerlyzer, Bedfont Scientific Ltd., Kent,
England). To minimize withdrawal effects during the scan, partici-
pants smoked a cigarette within 1 hr of the beginning of the scan.1

Next, participants received verbal instructions and completed a prac-
tice version of the scanner task. Participants also completed a variety
of other questionnaires that are not relevant to the present hypotheses.

The ads task. Professionally developed TV commercials
designed to help smokers quit smoking were obtained from public
health agencies and foundations including the American Legacy
Foundation, the California Department of Public Health, the Mas-
sachusetts Department of Public Health, and the Louisiana Public
Health Institute. Discussions with experts at these agencies nar-
rowed the pool of ads to those that would be most relevant to
smokers who were trying to quit smoking. Ads focusing on pre-
vention or that did not target current smokers were excluded.
Sixteen final video-based ads that specifically targeted smokers
and encouraged quitting were included. Content included testimo-
nials focusing on danger to the smoker (Massachusetts’ “Fight for

Your Life” Campaign), humorous ads emphasizing the social
value of quitting (Louisiana’s Finger Puppet Campaign), the dan-
ger of second-hand smoke to others (California Department of
Public Health), encouragement to relearn behaviors without ciga-
rettes (American Legacy Foundation’s Ex Campaign: “Re-
Learn”), and ads empathizing with the difficulty of quitting and
suggesting resources to help (American Legacy Foundation’s Ex
Campaign: “Direct Response”). All ads were 30 s long, with the
exception of two ads, which were 15 s long.

fMRI procedure. Stimuli were presented using fMRI scan-
ner compatible LCD goggles, and responses were recorded using
a scanner compatible button box. Foam padding was used to
reduce head motion. During the primary task, each participant
watched a series of 16 ads (each of which was designed to help
smokers quit smoking) while neural activity was recorded using
fMRI. The order of ads was counterbalanced across subjects.
Following the presentation of each ad, participants rated the extent
to which the ad promoted a sense of self-efficacy (“This ad makes
me feel that I can quit”), increased intentions to quit (“This ad
makes me more determined to quit”), and self-relevance (“I can
relate to this ad”). All ratings were made on a 4-point scale
(anchors: disagree strongly, disagree somewhat, agree somewhat,
agree strongly). Participants were given 4 s to make each rating.
Ads and ratings were interspersed with rest periods in which
participants viewed a fixation cross and were instructed to clear
their minds. Additional 15-s fixation-cross rest periods were inter-
spersed every four blocks to allow the hemodynamic response to
return to baseline.

fMRI data acquisition. Brain imaging data were acquired on
a 3T Siemens Trio scanner at the UCLA Ahmanson-Lovelace
Brain Mapping Center. High-resolution structural T2-weighted
echo-planar images (spin-echo; TR ! 5,000 ms; TE ! 34 ms;
matrix size 128 # 128; 34 axial slices; FOV ! 192 mm; 4 mm
thick) were acquired coplanar with the functional scans. One
functional scan lasting 11.5 min (351 volumes) was acquired
during the task (echo-planar T2*-weighted gradient-echo; TR !
2,000 ms; TE ! 30 ms; flip angle ! 90°; matrix size 64 # 64; 34
axial slices; FOV ! 192 mm; 4 mm thick).

Follow-up smoking measures. Approximately 1 month fol-
lowing the baseline portion of the study, an in-person follow-up
was conducted in the field, including a biological verification of
participants’ self-reported smoking (through expired CO). At this
stage, two participants were unable to be reached.

Data Analysis

fMRI data analysis. The imaging data were preprocessed
using a combination of FSL tools (FMRIB Software Library,
Oxford University, Oxford, England) and SPM8 (Wellcome De-
partment of Cognitive Neurology, Institute for Neurology, Lon-
don, England). All images were brain-extracted using FSL’s Brain
Extraction Tool and realigned within runs using FSL’s Motion
Correction using FMRIB’s Linear Image Registration Tool, then

1 Attempts were made to standardize the procedural order such that partic-
ipants smoked as closely as possible to the start of the scan. Some fluctuation
in time from the last cigarette to start of the ads task did occur given the
variability in setting up participants in the scanner, need to repeat instructions,
and time needed for participants to acclimate to using the button box.
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checked for residual motion and noise spikes using a custom
automated diagnostic tool (thresholded at 2-mm motion or 2%
global signal change from one image to the next). At this stage,
one participant was excluded because of extreme head motion. In
SPM8, all functional and anatomical images were reoriented to set
the origin to the anterior commissure and the horizontal (y) axis
parallel to the AC–PC line. Also in SPM8, functional images were
corrected for slice acquisition timing differences within volumes,
realigned within and between runs to correct for residual head
motion, and coregistered to the matched-bandwidth structural scan
using a six-parameter rigid body transformation. The coregistered
structural scan was then normalized into the Montreal Neurolog-
ical Institute standard stereotactic space, and these parameters
were applied to all functional images. Finally, the normalized
functional images were smoothed using an 8-mm full width at half
maximum Gaussian kernel. All functional imaging results are
reported in Montreal Neurological Institute coordinates.

The task was modeled separately for each subject, using a
blocked design in SPM5 (Wellcome Department of Cognitive
Neurology, Institute for Neurology, London, England). Initial
analyses modeled ad exposure compared with a rest period. Re-
sponse periods were modeled as effects of no interest in the present
analysis given that our primary interest lay in understanding real-
time neural responses to the ads. A corresponding random effects
model averaged across results at the single-subject level.

A priori ROI. The primary ROI was constructed using
Marsbar (Brett, Anton, Valabregue, & Poline, 2002), based on
prior work predicting behavior change from neural activity
(Falk et al., 2010). The ROI encompassed a ventral subregion of
MPFC that was most highly associated with behavior change in
work by Falk and colleagues (2010; see Figure 1). Thus, we
refined our region of interest to capitalize on the whole-brain
exploratory search conducted in that prior investigation. Aver-
age parameter estimates of activity in this ROI were extracted
at the group level using Marsbar.

Associations between neural activity during ad exposure and
changes in CO. We used changes in expired CO from baseline
to endpoint as our primary proxy for behavior change; change was

calculated as the difference between endpoint expired CO and
baseline expired CO (positive values indicate more successful
quitting). To determine whether activity during ad exposure in our
a priori ROI was associated with behavior change, we regressed
behavior change scores onto parameter estimates of activity from
the ROI. To determine whether neural activity explained variabil-
ity in behavior change that was not explained by self-report mea-
sures of intention, self-efficacy, and ability to relate to each ad, we
also entered these measures into a regression model, predicting
behavior change from neural activity, controlling for all self-report
measures collected in the scanner.

Complementary whole-brain searches were conducted with a
voxel-wise threshold of p $ .005 combined with a minimum
cluster size of 18 in MPFC (given our a priori hypothesis) and 42
in the rest of the brain, corresponding to p $ .05, False Discovery
Rate (FDR) corrected for each search space, based on a Monte
Carlo simulation implemented using AlphaSim in the software
package AFNI (http://afni.nimh.gov/afni/doc/manual/AlphaSim).

More specifically, in these whole-brain searches, we regressed
neural activity onto changes in CO, as well as changes in CO,
controlling for self-report measures. A design matrix was con-
structed for each subject at the single-subject level comparing
activity while viewing the ads to activity at rest. At the group level,
activity during the ads (compared with rest) was then correlated
with subsequent changes in expired CO (see Table S1, available
online as supplemental material). A parallel regression was run at
the group level assessing the relationship between activity during
ad exposure and changes in CO, controlling for intentions, self-
efficacy, and average ability to relate to the ads.

Results

Smoking Behavior Change

At baseline, participants were all heavy smokers (see recruit-
ment criteria) and smoked an average of 21.12 (SD ! 10.04)
cigarettes per day, corresponding to a baseline expired CO average
of 19.21 ppm (SD ! 11.37). At 1-month follow-up, participants
smoked an average of 5.00 (SD ! 5.42) cigarettes per day,
corresponding to an endpoint expired CO average of 12.07 ppm
(SD ! 10.72). This represented a significant decline: average
change in expired CO ! 7.14 ppm (SD ! 14.15), t(27) ! 2.672,
p ! .013; average change in cigarettes ! 16.13 cigarettes per day
(SD ! 11.30), t(27) ! 7.55, p $ .01 (Berkman et al., in press). The
correlation between self-report smoking behavior and our biolog-
ical measure of expired CO was significant both at baseline (r !
.44, p ! .02) and endpoint (r ! .48, p ! .009).2

Behavioral Responses to the Ads Task

One-sample t tests comparing neutral on a 4-point scale from
strongly disagree to strongly agree suggested that, on average,
participants could relate to the ads: M ! 2.85, SD ! 0.44, t(27) !

2 As reported elsewhere (Berkman et al., in press), due to nonnormality
of the self-report (number of cigarettes) variables, baseline and endpoint
number of cigarettes were log-transformed prior to conducting statistical
tests.

Figure 1. Medial prefrontal cortex (MPFC) region of interest used to
predict behavior change. This particular region of MPFC was selected a
priori based on prior work linking neural activity to behavior change in the
context of a simpler health behavior (sunscreen use) over a 1-week period.
In the current investigation, neural activity in this region also predicts
smoking reduction in a group of smokers over the course of a month, above
and beyond their self-reported intentions to quit, self-efficacy to quit, and
ability to relate to ads designed to help people quit smoking.
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4.225, p $ .001; exposure to ads significantly reinforced partici-
pants’ intentions to quit smoking: M ! 2.80, SD ! 0.56, t(27) !
2.757, p ! .010; and significantly increased their self-efficacy to
quit: M ! 2.75, SD ! 0.49, t(27) ! 2.712, p ! .012.

Associations Between Self-Reported Intentions,
Self-Efficacy, and Expired CO

The averaged values for intention and self-efficacy measures were
highly correlated with one another between subjects (r ! .93, p $
.001), and each was significantly correlated with the degree to which
participants could relate to the ads as a whole (rintention_relate ! .442,
p ! .018; rself-efficacy_relate ! .53, p ! .004). Likewise, within
subjects, each of the self-report measures was significantly corre-
lated, p $ .05 (the average within-subjects correlation between
individual ratings of intention and self-efficacy was .62, between
intention and ability to relate was .55, and between self-efficacy
and ability to relate was .58). Given the extremely high degree of
multicolinearity between intention and self-efficacy between sub-
jects, a composite intention/self-efficacy measure was calculated
as the average of the two measures, within subjects, for the
purpose of multiple regression analyses predicting behavior
change (thus “self-report” measures referred to below include a
composite intention/self-efficacy variable and the relate variable).
Table 1 includes correlations between each of the self-report
measures and neural activity, between subjects.

Neural Activity During Ad Exposure Predicts
Subsequent Changes in Expired CO

To determine whether neural activity in our a priori hypothe-
sized MPFC ROI was associated with behavior change, we re-
gressed changes in expired CO from baseline to 1 month postscan
onto parameter estimates of activity during ad exposure compared
with rest. Neural activity in this ROI during ad exposure signifi-
cantly predicted behavior change, both before, % ! .42, t(26) !
2.35, p ! .027, and after, % ! .45, t(24) ! 2.75, p ! .011,
controlling for self-reported intentions to quit, self-efficacy to quit,
and ability to relate to each ad (see Figure 2b) such that increased
activity in MPFC was associated with greater declines in expired
CO.

Complementary whole-brain analyses also identified a small
number of other regions associated with behavior change outside
of our hypothesized MPFC ROI. Three clusters of neural activity

in the second most common region implicated in self-related
processing—medial precuneus/posterior cingulate; peak cluster 1:
t(26) ! 3.67; peak cluster 2: t(26) ! 4.77; peak cluster 3: t(26) !
3.97; ps $ .005—and a region involved in motor planning—
supplementary motor area; t(26) ! 3.75, p $ .005—were the
regions most highly associated with behavior change. A complete
table of results, before and after controlling for self-report vari-
ables, is available in the supplemental online materials.

To determine the amount of variability in behavior change that
could be explained above and beyond self-report, we tested a series
of linear regression models, successively adding variables to the
model. R2 values were compared for models with self-report
variables alone (R ! .382, R2 ! .146) and with neural activity in
our functionally defined ROI plus all self-report measures (R !
.592, R2 ! .351). This comparison revealed that an additional 20%
of the variability in participants’ behavior change could be ex-
plained using neural activity, above and beyond variables ac-
counted for in traditional models of behavior change, R2 change !
.20, F(1, 24) ! 7.55, p ! .011. Put another way, the addition of
neural activity to the model more than doubles the amount of
variance explained and represents a significant improvement in the
model (see Table 2; see Figure 2b). Conversely, when neural
activity from our functional ROI was first entered into the model,
followed by self-report predictors (intention, self-efficacy, and
ability to relate to the messages), a marginally significant improve-
ment was observed, R2 change including intention, self-efficacy,
and relate variables in addition to medial prefrontal cortex ! .175,
F(1, 24) ! 3.24, p ! .057.

Thus, neural activity and self-report predict independent vari-
ance in changes in expired CO; neural activity during exposure to
ads designed to help smokers quit smoking more than doubles the
variability explained in subsequent behavior change (as inferred by
CO scores), as compared with the self-report measures used alone,
and significantly improves model fit. The combination of all

Table 1
Correlations Between Self-Report Measures of Intentions,
Self-Efficacy, Ability to Relate to the Ads, and Neural Activity
in Medial Prefrontal Cortex Region of Interest (MPFC ROI)

Measure Self-efficacy Intentions Ability to relate

Intentions .927!!

Ability to relate .525!! .442!

MPFC ROI .053 .032 .164

Note. Results suggest that whereas the self-report measures are related to
one another, they are each uncorrelated with estimates of neural activity
across subjects.
! p $ .05. !! p $ .005.

Figure 2. Variance explained by self-report alone and self-report com-
bined with neural activity in medial prefrontal cortex (MPFC). (a) A
regression model including self-reported intentions, self-efficacy, and abil-
ity to relate to messages predicted 14.6% of the variance in behavior
change. (b) A regression model including self-report measures plus neural
activity during ad exposure in MPFC predicted 35% of the variance in
behavior change (Rchange

2 ! .20!). ! p $ .05.

181NEURAL PREDICTION OF BEHAVIOR CHANGE



self-report measures collected plus neural activity results in the
greatest proportion of variability explained, with the fMRI and
self-report contributing equal portions of independent variance in
this case.

Discussion

In this investigation, we extended prior results demonstrating
the ability of neural responses to persuasive messages to predict
real-world outcomes to the context of smoking reduction. We
targeted smokers who were already taking action to quit, holding
stage of change constant across our sample. We also extended
prior results by demonstrating that the variability in behavior
change predicted by neuroimaging data is independent of self-
efficacy and ability to relate to the messages viewed, in addition to
being independent of measures captured in prior studies such as
intentions to change.

In this article, we have reported that activity in an identical
subregion of MPFC that was associated with behavior change in a
prior, independent study of sunscreen behavior change (Falk et al.,
2010) was associated with changes in expired CO following ex-
posure to professionally developed quitting ads. This relationship
(increased MPFC 3 greater decrease in expired CO) remained
significant after controlling for self-reported intentions and self-
efficacy, two common measures used to predict behavior change,
as well as participants’ self-reported ability to relate to the ads.
Consistent with prior findings (e.g., Falk et al., 2010) that found
that neural measures explained an additional 23% in behavior
change, neural activity in our ROI explained an additional 20% of the
variability in expired CO, above and beyond self-reported intentions,
self-efficacy, and ability to relate to the ads, doubling the variability
explained in comparison to traditional self-report alone.

In considering the psychological mechanisms that might link the
observed neural activity to behavior change, we hypothesize a
self-processing mechanism; activity in MPFC is implicated in
nearly all studies of self-related processing (Lieberman, 2010).
The idea that self-processing may link neural activity to behavior
change is also consistent with research suggesting that people who
become more absorbed in the narrative of antismoking commer-
cials report increased benefit (Dunlop, Wakefield, & Kashima,
2008), that self-relevant messages are more effective than mes-
sages targeting generic individuals (Dietz, Delva, Woolley, &
Russello, 2008; Strecher et al., 2008; Strecher, Shiffman, & West,
2005), and that tailored messages activate MPFC more than mes-
sages that are not personally tailored (Chua, Liberzon, et al., 2009).
These findings are also consistent with theories that highlight self-
related processes as predictors of behavior change (Ajzen & Fishbein,
1980; Fishbein et al., 2001; Strecher & Rosenstock, 1997).

Given that several prominent theories of behavior change
(Ajzen & Fishbein, 1980; Fishbein & Ajzen, 1975; Fishbein et al.,
2001; Strecher & Rosenstock, 1997) touch on self-related process-
ing of different varieties, prior work (Falk et al., 2010) speculated
that activity in our MPFC ROI might reflect activation of either
implicit or explicit connections between message content and the
self. In the current investigation, we tested one measure of explicit
connection between the self and the message (ability to relate to
the message). We found that self-reported ability to relate to
messages predicted variability independent of neural activity in
MPFC. This explicit measure may be useful in understanding the
process of behavior change; however, it does not explain the
MPFC–behavior relationship. Our findings do not rule out a dif-
ferent form of self-related processing, and informal debriefing with
subjects several weeks postscan suggested that many of the ads
that did not seem immediately relevant at the time of the scan
emerged as especially relevant and helpful as they engaged in the
process of quitting. One interpretation that is consistent with these
participant observations is that MPFC activity in this context
reflects an implicit connection between the self and the behavior in
question (in this case quitting); the particular ventral subregion of
MPFC targeted in our investigation has also been implicated in
implicit valuation and affective judgments, independent of con-
scious awareness (Moran, Heatherton, & Kelley, 2009; Rameson,
Satpute, & Lieberman, 2010).

It is also possible that neural activity in MPFC may capture a
different type of process that is distinct from intention, self-
efficacy, and ability to relate to message content, which can be
pinpointed in future investigations. Regions of MPFC in the vi-
cinity of the region observed by Falk and colleagues (2010) to
predict behavior change have been associated with framing effects
(Chua, Liberzon, et al., 2009; Chua, Polk, et al., 2009), implicit
preferences (McClure et al., 2004), consideration of personally
relevant future goals (D’Argembeau et al., 2010), and value of
stimuli in terms of expected outcomes with respect to the current
situation (Cunningham, Zelazo, Packer, & Van Bavel, 2007).

Building on evidence that MPFC activity is associated with
envisioning personal goals when envisioning future events
(D’Argembeau et al., 2010), as well as weighing costs and benefits
of stimuli against current experience (Cunningham et al., 2007), it
is possible that increased MPFC activity in our ROI supports
envisioning oneself carrying out the behavior in question. This
interpretation is consistent with classic work suggesting the im-
portance of providing a specific action plan in changing behavior
(Dabbs & Leventhal, 1966; Leventhal, Singer, & Jones, 1965;
Leventhal, Watts, & Pagano, 1967). This interpretation is also
consistent with the observed relationship between activity in other

Table 2
Results of Hierarchical Regression Predicting Changes in Smoking as Indicated by Expired Carbon Monoxide (CO), From
Self-Report Measures Alone (Intentions, Self-Efficacy, Ability to Relate to Ads), and Then Combining Self-Report Measures With
Neural Activity in an A Priori Defined Region of Medial Prefrontal Cortex

Step R R2
df

error F
Significant

model
R2

change
F

change
Significant
F change

1: Self-report .382 .146 25 2.14 .138
2: Self-report and neural activity .592 .351 24 4.32 .014 .204 7.554 0.011
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self-related processing regions (e.g., medial precuneus/posterior-
cingulate) as well as a region involved in motor planning (supple-
mentary motor area) in whole-brain regressions exploring regions
associated with behavior change (Kosten et al., 2006; McClernon,
Kozink, Lutz, & Rose, 2009). This coordinated activity might
index the extent to which antismoking ads prompt participants to
engage in planning of specific personal actions needed to carry out
the behavior in question.3 Thus, it is possible that although we
have focused initially on MPFC as producing a signal that explains
a sizable proportion of variability in behavior change, exploring
coordinated activity in MPFC, medial precuneus/posterior-
cingulate, and supplementary motor area could explain an even
greater proportion of variability in subsequent behavior change;
more ventral posterior cingulate activity has been observed in
other studies in which neural activity during cognitive tasks was
associated with subsequent changes in substance use (Brewer et
al., 2008; Paulus et al., 2005), and might be explored as an
additional ROI in future studies linking cognitive control to suc-
cessful quitting. Just as we built on prior work to refine our ability
to predict behavior change, regions identified in whole-brain
searches in this investigation can serve to develop even more
targeted and sophisticated ROIs in future work.

Limitations

Future work may also benefit by addressing limitations of the
current study. In particular, given that nicotine alters cerebral
blood flow and vascular resistance (Hall, 1972; Miyazaki, 1969;
Skinhoj, Olesen, & Paulson, 1973), that the effects may differ
across the brain (Jacobsen et al., 2002), and that acute nicotine
administration causes its own changes in BOLD signal (Kumari et
al., 2003; Stein et al., 1998), the neural activation observed in this
study could have been influenced by recency of smoking prior to
the scan; future work will benefit by more precisely measuring and
controlling time between nicotine administration and task perfor-
mance. Likewise, it should be noted that the expired CO measure
is sensitive to a number of factors other than recent smoking; for
example, the measure is sensitive to the recency of smoking
(which we attempted to control by allowing all participants to
smoke directly before the scan), the brand of CO machine (which
was standardized across the study), running and cardiovascular
fitness (future investigations might benefit from explicitly record-
ing information pertaining to changes in physical activity habits;
however, in the present sample, we are unaware of any major
changes in these habits among our participants), and proximity to
car emissions (which again could be more precisely measured in
future investigations, but is unlikely to have shifted dramatically
within our smokers over the span of the study), among other
factors. Furthermore, expired CO is sensitive to the proximity to
others smoking, which we believe is an advantage to this measure
in the current investigation because reducing both one’s own
smoking as well as exposure to others who are smoking are
important to long-term health. Expired CO presents the advantage
of being a biological index of recent smoking, and parallels other
investigations using fMRI to examine outcomes in cocaine-
dependent patients (Brewer et al., 2008) and to test compliance in
other fMRI/smoking investigations (McClernon et al., 2009); how-
ever, as in the present study, future investigations will also benefit
from observing the similarities and differences between such bio-

logical measures and more traditional self-report measures. To the
extent that these issues were present in the current data set, each
would have impaired our ability to predict outcomes from brain
data. However, controlling such factors in the future may allow
investigators to predict outcomes more precisely.

Conclusion

The results of this investigation provide convergent evidence
that neural activity can predict behavior change, above and beyond
self-report. Given that self-report and neural activity explain inde-
pendent portions of the variability in behavior change, neuroim-
aging methods can be viewed as a complement to existing self-
report methods, indexing processes that may be inaccessible to
conscious awareness or otherwise uncaptured through self-report.
The specific psychological mechanisms linking neural activity to
behavior change will be of interest to future investigations, where
tests of affective versus cognitive and implicit versus explicit
self-processes, as well as the role of envisioning the future self in
the context of goals may yield especially fruitful results. Networks
of activity including regions from both the self-related processing
network and areas implicated in motor planning may also serve as
particularly useful targets for future research. Finally, pinpointing
psychological mechanisms that link neural activity to behavior
change will help us connect our understanding of the brain to
classic work in health psychology. This will also be of use in
updating our understanding of behavior change and generating
novel self-report measures that could be used in a wider context to
explain variability that is currently accounted for using fMRI. The
current results bring us one step closer to the ability to use fMRI
to select messages that are most likely to change behavior both at
the individual and population levels, and further suggest that brain
data may provide information that introspection does not.

3 It is interesting to note that activity in these regions is also associated with
substance-cue potentiation in abstinent smokers viewing smoking-related cues
(McClernon et al., 2009), as well as relapse in cocaine-dependent patients who
viewed cocaine-related cues (Kosten et al., 2006). It is possible that responses
to cues prompting quitting and cues prompting activation of substance use
activate planning routines that would predict future behavior.
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