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ABSTRACT—Vul, Harris, Winkielman, and Pashler (2009,
this issue) claim that many brain–personality correlations
in fMRI studies are ‘‘likely . . . spurious’’ (p. 274), and
‘‘should not be believed’’ (p. 285). Several of their con-
clusions are incorrect. First, they incorrectly claim that
whole-brain regressions use an invalid and ‘‘nonindepen-
dent’’ two-step inferential procedure, a determination
based on a survey sent to researchers that only included
nondiagnostic questions about the descriptive process of
plotting one’s data. We explain how whole-brain regres-
sions are a valid single-step method of identifying brain
regions that have reliable correlations with individual
difference measures. Second, they claim that large corre-
lations from whole-brain regression analyses may be the
result of noise alone. We provide a simulation to demon-
strate that typical fMRI sample sizes will only rarely
produce large correlations in the absence of any true ef-
fect. Third, they claim that the reported correlations are
inflated to the point of being ‘‘implausibly high.’’ Though
biased post hoc correlation estimates are a well-known
consequence of conducting multiple tests, Vul et al. make
inaccurate assumptions when estimating the theoretical
ceiling of such correlations. Moreover, their own ‘‘meta-
analysis’’ suggests that the magnitude of the bias is ap-
proximately .12—a rather modest bias.

In an article in this issue, Vul, Harris, Winkielman, & Pashler
(2009, this issue) claim that brain–personality correlations in
many social neuroscience studies and those in related fields are

‘‘implausibly high’’ (p. 274), ‘‘likely . . . spurious’’ (p. 274), and
‘‘should not be believed’’ (p. 285). The article was originally titled

‘‘Voodoo Correlations in Social Neuroscience’’ and was circulated
widely in the scientific community, on the Internet, and in the

popular press prior to publication. The word voodoo, as applied to
science, carries a strong and specific connotation of fraudulence,

as popularized by Robert Park’s (2000) book, Voodoo Science: The
Road From Foolishness to Fraud. Though the title was subse-

quently changed to remove the word voodoo, the substance of the
article and its connotations are unchanged: It is a pointed attack

on social neuroscience. Much of the article’s prepublication im-
pactwas due to its aggressive tone, which is nearly unprecedented
in the scientific literature andmade it easy for the article to spread

virally in the news. Thus, we felt it important to respond both to
the tone and to the substantive arguments.

The trouble with the Vul et al. article is that it rests on a
fundamental misconception about how statistical procedures
are used in neuroimaging studies. They point out that post hoc

correlation estimates from whole-brain hypothesis testing pro-
cedures will tend to be greater than the true correlation value

(this has been widely known but also widely underappreciated).
However, they imply that post hoc reporting of correlations

constitutes an invalid inferential procedure, when in fact it is a
descriptive procedure that is entirely valid. In addition, the
quantitative claims that give their arguments the appearance of

statistical rigor are based on problematic assumptions. Thus, it
is ironic that Vul et al.’s article—which critiques social neu-

roscience as having achieved popularity in prominent journals
and the press due to shaky statistical reasoning—itself achieved

popularity based on problematic claims about the process of
statistical inference. Our goal in this reply is to clarify the in-
ferential procedures in question, to set the record straight, and to

take a closer look at how conducting whole-brain correlation
analyses might quantitatively impact correlation estimates.

DO WHOLE-BRAIN CORRELATIONS USE A
‘‘NONINDEPENDENT’’ TWO-STEP

INFERENCE PROCEDURE?

Vul et al. contend that correlations resulting from a search across

multiple brain regions (or brain voxels), the dominant method in
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neuroimaging research, is a two-step procedure in which the

method used to select voxels to test (correlation) and the test
performed on the resulting regions (correlation) are not inde-

pendent. The clearest account of this comes from another paper
by Vul and Kanwisher (in press) in which they describe the

analogous situation in whole-brain contrast analyses and sug-
gest that, ‘‘If one selects only voxels in which condition A pro-
duces a greater signal change than condition B, and then

evaluates whether the signal change for conditions A and B
differ in those voxels using the same data, the second analysis is

not independent of the selection criteria.’’ This statement is
clearly pointing to the existence of two steps, each involving an

inferential procedure, with the second inference guaranteed to
produce significant results because of its nonindependence from
the first inference.

The problem is that we know of no researchers who conduct
their analyses this way. We were able to contact authors from 23

of the 28 so-called nonindependent articles reviewed by Vul et
al. Each of the contacted authors reported that they used a
single-step inferential procedure, rather than the two-step pro-

cedure described by Vul et al. Several authors expressed frus-
tration that the multiple choice questions asked by Vul et al. did

not allow the authors to indicate whether they used one or two
inferential steps, contributing to Vul et al.’s misrepresentation of

how these studies were conducted.
So what do these researchers actually do?When a whole-brain

regression analysis is conducted, the goal is typically to identify

regions of the brain whose activity shows a reliable nonzero
correlation with another individual difference variable. A like-

lihood estimate that this correlation was produced in the ab-
sence of any true effect (e.g., a p value) is computed for every
voxel in the brain without any selection of voxels to test. This

is the only inferential step in the procedure, and standard
corrections for multiple tests are implemented to avoid false-

positive results. Subsequently, descriptive statistics (e.g., effect
sizes) are reported on a subset of voxels or clusters. The de-

scriptive statistics reported are not an additional inferential
step, so there is no second inferential step. For any particular
sample size, the t and r values are merely redescriptions of the p
values obtained in the one inferential step and provide no ad-
ditional inferential information of their own.

The fact that Vul et al.’s questionnaire (see their Appendix A)
only asks about plotting of correlations to determine whether a

second inferential step has occurred is one of the primary
sources of the misunderstanding that has emerged from their
article. Vul et al. interpret plotting of data as a second inferential

step, but this is incorrect. Plotting the correlation is a purely
descriptive process, not an inferential process. Nevertheless,

Vul clearly characterizes this as an example of the noninde-
pendence error, ‘‘The most common, most simple, and most in-
nocuous instance of nonindependence occurs when researchers

simply plot (rather than test) the signal change in a set of voxels
that were selected based on that same signal change’’ (Vul &

Kanwisher, in press). This statement implies that if a behavioral

researcher correlated an outcome measure with extraversion,
neuroticism, and psychopathy and found a significant relation-

ship only with extraversion, then it would constitute a non-
independence error to plot just the extraversion correlation.

Although Vul et al. constructed the survey sent to authors with
the intention of assessing which analyses used a second non-
independent inferential step, the questionnaire did not ask a

single question about a second inferential step; it only asks
about data plotting, which is nondiagnostic with respect to in-

ferential methods.
If the reporting of correlation values and scatterplots is merely

descriptive, then why do it? Vul et al. imply that its purpose is to
‘‘sell’’ correlations that appear to be very strong. Scatterplots
provide an implicit check on underlying assumptions that must

be met if any standard inferential procedure is used. A corre-
lation of r5 .7 in a sample of 30 participants could, for example,

be driven entirely by one or two outliers (constituting a violation
of the normality assumption), and readers viewing the scatter-
plot would quickly see this and question the result. Thus, it is

true that correlation scatterplots often look very compelling
when r values are high, and they should not be taken as unbiased
estimates of the population correlation coefficient, but they
should be reported nonetheless.

In sum, despite Vul et al.’s characterizing whole-brain re-
gressions as ‘‘seriously defective’’ (p. 285), they provide a valid
test, in a single inferential step, of which regions show a reliable

linear relation with an individual difference measure. What
reported correlations from whole-brain regressions really show

is evidence for a nonzero effect, which is what they were de-
signed to test. It is also true that the reported effect sizes (r, t, Z)
from whole-brain analyses will be inflated (i.e., overestimated

relative to the population effect size) on average. However, as we
detail below, the magnitude of the inflation may be far less than

Vul et al. would have readers believe.

HOWOFTEN ARE LARGE CORRELATIONS OBSERVED
WITHOUT ANY TRUE EFFECT?

Vul et al. imply that the correlations in at least a sizable subset of

social neuroscience studies are not based on any true underlying
relationship between psychological and neural variables (hence

the terms voodoo and spurious). For all statistical tests, there is
some likelihood that the observed result is spurious and the true
population effect size is zero. This likelihood is what p values

estimate. A p value of .05 in any research domain suggests that the
observed effect would have occurred by chance in 5% of exper-

imental samples. Because a typical whole-brain analysis involves
thousands of tests, the likelihood of false positives is much
greater, and thus correction for multiple comparisons is essential.

Although spurious correlations will occur (see Fig. 4 from Vul
et al. on a simulation assuming N5 10), one critical question in

the context of correlational analyses in fMRI is how often large
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correlations such as those targeted by Vul et al. will occur in the

absence of any true effect—and, when prior anatomical hy-
potheses are available, how often they will occur in the expected
anatomical locations. To assess how frequently spurious corre-

lations might occur in a typical whole-brain regression analysis,

we conducted a simulation (see Fig. 1). We examined how often

correlations ! .80 are expected to be observed anywhere in the
brain in the absence of any true signal (this depends on the
sample size and number of effective independent comparisons;

see Fig. 1 legend for details). With 18 subjects (the average
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Results at r > .8

Detail: Studies with few
false positives

Pr
op

or
tio

n 
si

m
ul

at
ed

 s
tu

di
es

C
um

ul
at

iv
e 

pr
op

or
tio

n 
of

 
si

m
ul

at
ed

 s
tu

di
es

Number of tests with r > .8 Number of tests with r > .8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 10 20 30 40 0

0

0.2

0.4

0.6

0.8

1

5 10

N = 10
N = 15
N = 18
N = 20

N = 10
N = 15
N = 18
N = 20

Likelihood that particular numbers of false-positive tests will occur
(at a threshold of r > 0.8) 

Sample
size 0

6 or
more

15 26.3% 39.1% 21.2% 9.7% 2.9% 0.4% 0.4% 
18 76.2% 21.4% 2.3% 0.1% 0.0% 0.0% 0.0% 
20 90.5% 9.1% 0.4% 0.0% 0.0% 0.0% 0.0% 

1 2 3 4 5

Fig. 1. A simulation of the number of high false-positive correlations (correlations above 0.8) that
might reasonably occur in a typical whole-brain regression analysis. We conducted 1,000 simulated
whole-brain regression analyses in which brain and covariate values were independent Gaussian
random variables. The left panel shows a histogram of the number of simulated studies (y axis) that
yielded a given number of tests in which r > 0.8 anywhere in the brain map (x axis). Studies with 10
subjects, as in Vul et al.’s simulation, yielded high numbers of false-positive tests (typically 15 to 25).
Studies with 18 subjects (the mean of the criticized studies) yielded very few false-positive results.
The right panel shows details of the histogram between 0 and 10 false-positive results. With 18
participants, 76% of studies showed no false-positive results at r > .8, 21% showed a single false-
positive test, and 2% showed exactly two false-positive tests. These results are illustrative rather
than exact; the actual false positive rate depends on details of the noise structure in the data and can
be estimated using nonparametric methods on the full data set. The results presented here depend
principally on the sample size (N), the number of effective independent tests (NEIT) performed in the
whole-brain analysis, and standard assumptions of independence and normally distributed data. To
estimate the NEIT, we used the p value thresholds for 11 independent whole-brain analyses reported
in Nichols and Hayasaka (2003) that yield p< .05 with family-wise error-rate correction for multiple
comparisons as assessed by Statistical Nonparametric Mapping software. We then equated this p
value threshold to a Bonferroni correction based on an unknown number of independent compar-
isons and solved for the unknown NEIT for each study. Averaging over the 11 contrast maps yielded
an average of 7,768 independent comparisons. Individual studies may vary substantially from this
average. Dividing the number of voxels in each map by the NEIT for each study and averaging
yielded a mean of 25.3 voxels per test; thus, each false-positive result can be thought of as a sig-
nificant region encompassing 25 voxels.
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N was 18.25 in the studies reviewed by Vul et al.), 76% of the

simulated studies reported no correlation of r ! .80 by chance
anywhere in the (simulated) brain. Only 2% reported two or

more false-positive correlations. This suggests that in actual
studies with similar properties and multiple comparison pro-

cedures, the great majority of reported effects of this magnitude
reflect a true underlying relationship.
In addition, false-positive activations are likely to be randomly

and uniformly distributed throughout the brain. If each of the
social neuroscience studies in question had reported no more

than one or two significant correlations in regions uniformly
distributed over the brain across studies, therewould be reason to

question whether they were meaningful as a set. However, many
studies report multiple correlated regions in the same approxi-
mate brain areas, which is consistent with the notion of distributed

networks underlying social and affective phenomena.
For example, among the articles critiqued by Vul et al. are

studies examining fear of pain (Ochsner et al., 2006), empathy
for pain (Singer et al., 2004, 2006), and social pain (Eisenberger,
Lieberman, & Williams, 2003). In each of these pain-related

studies, significant correlations were reported between indi-
vidual difference measures and activity in the dorsal anterior

cingulate cortex, a region central to the experience of pain
(Price, 2000). The results of these studies are clearly not dis-

tributed uniformly over the brain, as would be expected if these
correlations were spurious. The same point is made by meta-
analyses of the neuroimaging literature on emotion, which

clearly show ‘‘hot spots’’ of consistently replicated activity
across laboratories and task variants (Kober et al., 2008; Wager

et al., 2008). It is important to note that our meta-analyses
suggest that, to a first order of approximation, results from
studies of social and emotional processes are no more randomly

distributed across the brain than are results from studies in other
areas of cognitive neuroscience such as working memory (Wager

& Smith, 2003), controlled response selection (Nee, Wager, &
Jonides, 2007), and long-term memory (van Snellenberg &

Wager, in press).
In sum, even without considering any prior anatomical hy-

potheses, most, but not all, of the large correlations that Vul et al.

target are likely to represent real relationships between brain
activity and psychological variables. Furthermore, the use of

prior anatomical hypotheses that limit false-positive findings are
the rule, rather than the exception. It is difficult to reasonably

claim that the correlations, as a set, are ‘‘voodoo.’’

HOW INFLATED ARE NONINDEPENDENT
CORRELATIONS?

It is a statistical property of any analysis in which multiple tests
are conducted that observed effect sizes in significant tests will

be inflated (i.e., larger than would be expected in a repeated
sample; Tukey, 1977). Vul et al. suggest that so-called nonin-

dependent correlations (descriptive correlation results from

significant regions in voxel-wise searches) resulting from whole-

brain analyses are ‘‘inflated to the point of being completely
untrustworthy’’ (p. 284) and ‘‘should not be believed’’ (p. 285). It

is true that there is inflation in such correlations (though not
because of any invalid inferential procedure), it would be useful

to know just how inflated these correlations are in the social
neuroscience findings they criticize.
Although it is impossible to know for sure, the ‘‘meta-analy-

sis’’1 by Vul et al. provides some measure of this inflation within
the social neuroscience literature. In their Figure 5, Vul et al.

plot the strength of correlations using what they deem to be
acceptable independent procedures in green and so-called

nonindependent (biased) correlations in red. The obvious con-
clusion to draw is that the nonindependent correlations have
higher values than the gold-standard independent correlations,

and thus they are systematically inflated.
To assess the average magnitude of the independent and

nonindependent correlations, we collected all the articles cited
in Vul et al.’s meta-analysis and extracted all of the correlations
that met the inclusion criteria they describe. In doing so, we

were surprised to find several anomalies between the set of
correlations included in the Vul et al. meta-analysis and the set

of correlations actually in the articles. We identified 54 corre-
lations in the articles used in their meta-analysis that met their

inclusion criteria, but were omitted from the meta-analysis
without explanation. We also found three ‘‘correlations’’ in the
meta-analysis that were really effect sizes associated with main

effects rather than correlations (see the Appendix for a break-
down). Among the nonindependent correlations, almost 25% of

the correlations reported in the original articles were not in-
cluded in Vul et al.’s meta-analysis. The vast majority of the
omitted correlations (50 of 54) and mistakenly included effects

(3 of 3), if properly included or excluded, would work against Vul
et al.’s hypothesis of inflated correlations due to nonindependent

correlation reporting (see Fig. 2). In other words, the omitted
correlations were not randomly distributed with respect to the

group means, as would be expected from clerical errors. Of the
41 omitted nonindependent correlations, 38 had values lower
than the mean of included nonindependent correlations. The

mean of the omitted nonindependent correlations (.61) was

1Although Vul et al. characterize their review as a meta-analysis, their se-
lection of studies for inclusion appears biased and nonreproducible. The se-
lection of studies includes articles with large correlations that Vul et al. were
likely aware of prior to sampling the literature (i.e., those papers that brought
the issue of large correlations to their attention). If Vul et al. knew the mag-
nitude of the correlations in these articles and then chose search terms guar-
anteed to include these in the meta-analysis, this would seem to be the kind of
sampling bias that Vul et al. accuse others of. In addition, the selection of
studies in their review is not reproducible. Vul et al. indicate that they searched
for ‘‘social terms (e.g., jealousy, altruism, personality, grief)’’ (p. 276), which is
obviously an incomplete description. However, just to take one example, we
searched for altruism and found several other fMRI papers on empathy from the
time period covered by the Vul et al. review that were omitted from the meta-
analysis for no discernable reason. Given that a number of these studies rep-
licate the Singer et al. (2004) findings, it again raises questions about the se-
lective inclusion of studies in their review.
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significantly lower than the mean of the included nonindepen-
dent correlations (.69), t(173) 5 4.06, p < .001. Of the 13

omitted independent correlations, 12 had values higher than the
mean of the included independent correlations. The mean of the

omitted independent correlations (.63) was significantly higher
than the mean of the included independent correlations (.57),
t(129)5 2.74, p< .01. All three of the included nonindependent

correlations that should have been omitted had values higher
than the mean of the included nonindependent correlations.

Based solely on the correlations that Vul et al. included in
their meta-analysis, the mean of the nonindependent correla-

tions (average r 5 .69) is higher than the mean of the inde-

pendent correlations (average r5 .57), t(254)5 5.31, p< .001
(see Fig. 3a). This would suggest an average inflation of .12,

which is not insignificant, but hardly worthy of the attacks made
by Vul et al. However, there are reasons to believe that the es-

timate of the inflation within this sample of correlations may
itself be inflated.
One reason why independent correlations from region-of-in-

terest (ROI) analyses will tend to be smaller on average than
nonindependent correlations from whole-brain analyses has

nothing to do with the validity of either method. The minimum
reportable r value in a study depends on the p value threshold,
which will typically differ between the ROI analyses (used to
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Fig. 2. Distribution of correlations in papers surveyed by Vul et al. but omitted from their meta-
analysis. A: Independent correlations that were omitted from the Vul et al. meta-analysis. The
dotted line indicates the mean of independent correlations (.57) that were included in their meta-
analysis. Twelve of the 13 omitted independent correlations were higher than this mean. B: Non-
independent correlations that were omitted from the Vul et al. meta-analysis. The dotted line in-
dicates the mean of nonindependent correlations (.69) that were included in their meta-analysis.
Thirty-eight of the 41 omitted nonindependent correlations were lower than this mean.
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generate the independent correlations) and whole-brain ana-
lyses (used to generate the nonindependent correlations). If an

ROI analysis is examining effects in two regions in a sample of
18 subjects, then the p value threshold is .025 for a corrected p
value of .05, and thus the minimum reportable correlation would
be an r of .51. In a whole-brain analysis of 18 subjects using a p
value threshold of .005, the minimum reportable correlation is
an r of .62, and at a p value threshold of .001, the minimum
reportable correlation is an r of .69. Thus, a portion of the

difference observed in their meta-analysis is due to these re-
porting constraints rather than the analytic method per se.

ARE INDEPENDENT CORRELATIONS
UNBIASED ESTIMATES?

Although Vul et al. focus on potential bias in nonindependent

correlations, another reason for mean differences in noninde-
pendent and independent correlations is biases in the inde-
pendent correlations. The accuracy of correlation estimates

relative to population values depends on the details of the study
procedures in complex ways, and there are several potential

sources of bias in the independent correlations that Vul et al.
consider to be the gold standard. To illustrate this complexity, we
know of at least one statistical effect that causes many of the

correlations in the independent analyses to be systematically
underestimated. Why would this be the case? Half of the inde-

pendent correlations were computed on voxels or clusters se-

lected from analyses of group-average contrast effects (e.g.,
voxels that were more active in Task A than in Task B without

regard for the individual difference variable). Because low
variability is one of two factors that increase t values, selecting
voxels with high t values for subsequent correlation analyses
will tend to select voxels with low variability across subjects.

This selection procedure restricts the range of the brain data and
works against finding correlations with other variables.2

We reanalyzed the correlations in Vul et al.’s meta-analysis by

(a) applying a correction for restricted range to the 58 inde-
pendent correlations obtained using the procedure likely to

result in restricted range, (b) including the previously omitted
correlations, and (c) removing the three noncorrelations that

were mistakenly included in the original meta-analysis. Inde-
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Fig. 3.Distribution of independent and nonindependent correlations uncorrected and corrected for restriction of range, based on
papers included in the meta-analysis by Vul et al. A: A reconstruction of the correlations plotted in Figure 5 of Vul et al. Cor-
relations are plotted as a percentage of total correlations of each type. In this display, nonindependent correlations (average r 5
.69) are inflated relative to the independent correlations (average r 5 .57) by an average of .12. B: A reanalysis of the data from
the studies included in the meta-analysis by Vul et al. Independent correlations using a procedure likely to result in restricted
range issues were corrected;, 52 correlations in the relevant papers that were omitted by Vul et al. were included, and 3 ‘‘cor-
relations’’ that were not actually correlations were removed. In the reanalysis, the nonindependent correlations (average r5 .69)
are no longer observed to be inflated relative to independent correlations (average r 5 .70).

2When a subsample has systematically lower variance than the full sample
(i.e., restriction of range), correlations between the subsample and individual
difference measures will produce correlation values that are smaller than the
true correlation in the population (Thorndike, 1949). To give a simple analogy,
imagine a correlation of .65 exists between age and spelling ability in 5 to 18
year olds. If we only sample 9 and 9.5 year olds, the observed correlation be-
tween age and spelling will be lower because we will have sampled from a
restricted range of the age variable. Fortunately, the restriction of range effect
can be corrected using the following formula from Cohen, Cohen, West, and
Aiken (2003, p. 58), if the variance of the restricted sample and full sample are
known:
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pendent correlations based on anatomically defined regions of

interest do not have restricted range and thus were not corrected.
Because we do not have access to the raw fMRI data from each of

the surveyed studies, we estimated the full and restricted sample
variances needed for the correction formula from one of our data

sets and applied these variances to all of the independent cor-
relations in the meta-analysis.3

In our reanalysis, there was no longer any difference between

the independent (average r 5 .70) and the nonindependent
(average r5 .69) correlation distributions, t(304)5&0.57, p>
.10 (see Fig. 3b).4 Thus, when adjusted for restriction of range,
the independent and nonindependent samples of correlations do

not support Vul et al.’s assertion of massive inflation. This should
be seen as an exercise rather than a complete analysis, because
we could not compute the variance for the full and restricted

samples in each study, and because we did not attempt to take all
other possible sources of bias into account. Indeed, calculating

the bias in effect size would be at least as complex as deter-
mining a valid multiple comparisons corrections threshold,
which requires detailed information about the data covariance

structure in each study. Nevertheless, it does suggest that
whatever inflation does exist may be far more modest and less

troubling than Vul et al.’s characterization suggests.

ARE SUCH LARGE CORRELATIONS
THEORETICALLY POSSIBLE?

The upper limit on the observed correlation between two mea-

sures is constrained by the square root of the product of the
reliabilities of the two measures as measured in a particular
sample. Vul et al. suggest that many nonindependent correla-

tions violate this upper limit on what should be observable. On
the basis of a handful of studies that examined the reliability of

fMRI data, Vul et al. provide estimates of what they believe a
likely average reliability is for fMRI data ( ' .70). Similarly,
they suggest that personality measures are likely to have relia-

bilities in the .70–.80 range. Applying the products of the re-
liabilities formula, they conclude that the maximum upper

bound for observable correlations is .74.
It is troubling that Vul et al. would make the bold claim that

observed correlations from social neuroscience above .74 are
‘‘impossibly high’’ (p. 285) and ‘‘exceeding the upper bound’’

(p. 276) of what can legitimately be observed. This claim is

based on a rough estimate of reliability that is then generalized
across a range of measures. If we estimated that grocery store

items cost, on average, about $3, would it then be theoretically
impossible to find a $12 item? Vul et al. make this claim despite

the facts that (a) fMRI reliability has never been assessed for
social neuroscience tasks; (b) if one is generalizing from pre-
viously measured reliabilities to measures with unknown reli-

ability, it is the highest known reliabilities, not the average, that
might best describe the theoretical maximum correlation ob-

servable; and (c) they acknowledge in Footnote 19 that some
independent correlations are above .74 due to sampling fluc-

tuations of observed correlations, an acknowledgment that
should also extend to the nonindependent correlations.5

If we assume that brain regions in fMRI studies can have

reliabilities above .90, as multiple studies have demonstrated
(Aron, Gluck, & Poldrack, 2006; Fernandez et al., 2003), then

the reliability of the individual difference measures actually
used becomes critical. Consider, for example, the correlation
(r5 .88) between a social distress measure and activation in the

dorsal anterior cingulate cortex during a social pain manipula-
tion (Eisenberger et al., 2003) that is singled out by Vul et al.

from the first page of their article. If one generically assumes that
individual difference measures will all have reliabilities of .70–

.80, then one would falsely conclude that the observed corre-
lation in that study is not theoretically possible. However,
multiple studies have reported reliabilities for this social dis-

tress measure between .92 and .98 (Oaten, Williams, Jones, &
Zadro, 2008; Van Beest & Williams, 2006), a fact that Vul et al.

were aware of.6 Applying reliabilities of .90 for fMRI and .95 for
the social distress measure yields a theoretical upper limit on
observable correlations at .92. Thus, by Vul et al.’s own criteria,

a .88 correlation is theoretically possible in this case. This is just
one example, but it points to the more general mistake of making

claims about the theoretical upper bound of correlations based
on approximate guesses of the measures’ reliability.

CONCLUSIONS

Our reply has focused on several misconceptions in the Vul et al.
article that unfortunately have been sensationalized by the au-

thors and by the media prior to publication. Because social
neuroscience has garnered a lot of attention in a short period of

time, singling it out for criticism may make for better headlines.

3For the full sample variance, we extracted data from a set of voxels dis-
tributed throughout the brain selected without consideration of t test values. For
the restricted sample variance, we extracted data from voxels with a significant
group effect, as was typical of the independent studies. As expected, the av-
erage standard deviation in the full (2.82) and restricted samples (1.33) were
significantly different from one another, t(48) 5 4.63, p < .001.

4Of several formulas considered for restricted range correction, the Cohen et
al. (2003) formula that we used was the most conservative. Using Thorndike’s
formula (1949), the independent correlations actually become significantly
higher than the nonindependent correlations. Also, if we only use the corre-
lations that Vul et al. included in the correction for restricted range analysis, the
results are the same—there is no longer a significant difference between the
samples.

5After correcting for restricted range, 46% of the independent correlations
are above .74 and thus also violate Vul et al.’s theoretical upper bound.

6One of the authors of the Vul et al. article e-mailed one of the authors of the
Eisenberger et al. (2003) article about reliabilities for this social distress
measure prior to the submission of their manuscript and further inquired spe-
cifically about one of the .92 reliabilities (K. D. Williams, personal communi-
cation, January 17, 2009). Consequently, it is disappointing that Vul et al. did
not indicate that this .88 correlation was not violating the theoretical upper limit
for this study.
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As this article makes clear, however, Vul et al.’s criticisms rest

on shaky ground at best.
Vul et al. describe a two-step inferential procedure that would

be bad science if anyone did it, but as far as we know, nobody
does.7 They used a survey to assess which authors use this

method, but they did not include any questions that would ac-
tually assess whether the nonindependence error had occurred.
As long as standard procedures for addressing the issue of

multiple comparisons are applied in a reasonable sample size,
large correlations will occur by chance only rarely, and most

observed effects will reflect true underlying relationships. Vul et
al.’s own meta-analysis suggests that the nonindependent cor-

relations are only modestly inflated, calling into question the use
of labels such as ‘‘spurious’’ and ‘‘untrustworthy.’’ Finally, Vul et
al. make incorrect assumptions when attempting to use average

expected reliabilities to inform on the theoretically possible
observed correlations.

Ultimately, we should all be mindful that the effect sizes from
whole-brain analyses are likely to be inflated, but confident in
the knowledge that such correlations reflect meaningful rela-

tionships between psychological and neural variables to the
extent that valid multiple comparisons procedures are used.

There are various ways to balance the concerns of false positive
results and sensitivity to true effects, and social neuroscience

correlations use widely accepted practices from cognitive
neuroscience. These practices will no doubt continue to evolve.
In the meantime, we’ll keep doing the science of exploring

how the brain interacts with the social and emotional worlds
we live in.
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APPENDIX: SAMPLING ERRORS IN THE VUL ET AL.
(2009) META-ANALYSIS

1. In Study 4 (Ochsner et al., 2006), one nonindependent cor-
relation was not included in the analysis.

2. In Study 6 (Eisenberger et al., 2003), Vul et al. included three

‘‘correlations’’ that were not in fact correlations. For three of
the main effect analyses comparing exclusion to inclusion,

the authors reported an effect size r statistic, along with t and
p. No individual difference variable was involved in these

analyses.
3. In Study 7 (Hooker, Verosky, Miyakawa, Knight, & D’Es-

posito, 2008), three independent correlations were not in-

cluded in the analysis.
4. In Study 21 (Rilling et al., 2007), 35 nonindependent cor-

relations from Table 8 were not included, and one other
correlation from the manuscript was also not included. Al-

though these correlations are listed as a table of r values, it is
conceivable that they were left out of the analysis because p
values were not presented. A simple calculation would have

confirmed that, with 22 subjects, nearly all of these corre-
lations are significant at p< .005 (and most at p< .001) and

thus met the sampling criteria.
5. In Study 22 (Mobbs, Hagan, Azim, Menon, & Reiss, 2005),

five nonindependent correlations were included in Figure 5.

However, these correlations were calculated from ROIs ob-
tained in a contrast analysis comparing two conditions, and

they should have therefore been classified as independent
correlations.

5. In Study 31 (Singer et al., 2006), four nonindependent cor-
relations that are described in the text were not included,
though they were listed numerically in the supplementary

materials (as indicated in the main text).
6. In Study 39 (Posse et al., 2003), one independent correlation

was not included in the analysis.
7. In Study 45 (Leland et al., 2006), one independent correla-

tion was not included in the analysis.

8. In Study 53 (Kross, Egner, Ochsner, Hirsch, & Downey,
2007), three independent correlations were not included in

the analysis.
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