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CD38 genetic variation has been associated with autism spectrum disorders and
social anxiety disorder, which may result from CD38’s regulation of oxytocin secretion.
Converging evidence has found that the rs3796863 A-allele contributes to increased
social sensitivity compared to the CC genotype. The current study examined the
moderating role of CD38 genetic variants (rs3796863 and rs6449182) that have
been associated with enhanced (or reduced) social sensitivity on neural activation
related to neuroticism, which is commonly elevated in individuals with social anxiety
and depression. Adults (n = 72) with varying levels of social anxiety and depression
provided biological samples for DNA extraction, completed a measure of neuroticism,
and participated in a standardized emotion processing task (affect matching) while
undergoing fMRI. A significant interaction effect was found for rs3796863 x neuroticism
that predicted right amygdala-subgenual anterior cingulate cortex (sgACC) functional
connectivity. Simple slopes analyses showed a positive association between neuroticism
and right amygdala-sgACC connectivity among rs3796863 A-allele carriers. Findings
suggest that the more socially sensitive rs3796863 A-allele may partially explain the
relationship between a known risk factor (i.e., neuroticism) and promising biomarker (i.e.,
amygdala-sgACC connectivity) in the development and maintenance of social anxiety
and depression.

Keywords: CD38, fMRI, functional connectivity, neuroticism, psychopathology, oxytocin

INTRODUCTION

The multifunctional protein CD38 (Cluster of Di�erentiation 38) contributes to individual
di�erences in social cognition and behavior, which may result from CD38’s regulation of oxytocin
secretion (Jin et al., 2007). The majority of human research associating CD38 genetic variation
and social phenotypes has focused on two genetic variants of interest, rs3796863 (located in intron
7 on chromosome 4p15; Malavasi et al., 2008), and rs6449182 (located in a regulatory region in
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intron 1; Ferrero et al., 1999). Compared to individuals with the
rs3796863 CC genotype, A-allele carriers have been associated
with enhanced social sensitivity in the form of increased
parental sensitivity (Feldman et al., 2012), higher levels of
empathy and altruism (Liu et al., 2017), and decreased risk
of social impairments and autism spectrum disorders (Lerer
et al., 2010; Munesue et al., 2010). Individuals carrying the
A-allele have shown greater CD38 gene expression (Lerer
et al., 2010) and higher levels of unextracted plasma oxytocin
(Feldman et al., 2012) in comparison to individuals with
the CC genotype. However, contrary to previous results
demonstrating beneficial socioemotional outcomes associated
with the rs3796863 A-allele, our research group found that among
individuals who experienced higher levels of interpersonal stress,
A-allele carriers had higher levels of social anxiety and depression
over a 6-year period compared to those with the CC genotype
(Tabak et al., 2016).

As research on oxytocin, and oxytocin system related genes
such as CD38, has progressed paradoxical results such as these
have led to the hypothesis that oxytocin enhances sensitivity to
positive or negative social stimuli (Ol� et al., 2013; Shamay-
Tsoory and Abu-Akel, 2015). Work focusing on oxytocin system
genes has shown that variants associated with enhanced social
sensitivity may contribute to positive or negative outcomes
depending on relevant environmental factors and individual
di�erences (Tabak, 2013). For example, several studies focused on
variation in the oxytocin receptor gene polymorphism rs53576
have found that G-allele carriers who experienced childhood
maltreatment were at greater risk for mental health concerns
(Bradley et al., 2011; McQuaid et al., 2013; Andreou et al., 2018),
even though the majority of research examining this SNP has
found the G-allele to be beneficial or protective. Further research
focusing on variations in oxytocin system genes has shown
that alleles previously associated with beneficial social outcomes
may also be related to psychopathology when accounting for
relevant moderators (Kushner et al., 2018). Together, studies such
as these demonstrate that variation in oxytocin system genes,
including CD38, may contribute to enhanced levels of social
sensitivity, which can exacerbate the e�ects of environmental
stressors that contribute to the development and maintenance
of psychopathology (Tabak, 2013). This is particularly relevant
because positive associations between oxytocin and human
social processes have often overshadowed evidence of the
potential role of oxytocin in the development of psychopathology
(McQuaid et al., 2014).

In the present study, we sought to build on our previous
findings (Tabak et al., 2016) by investigating the underlying
mechanisms that connect CD38, social sensitivity, and
psychopathology. To examine this question, we focused on
how CD38 genetic variation moderated a neural circuit that
includes regions that have been associated with hyperactivation
in both depression and social anxiety; specifically, we examined
connectivity between the subgenual anterior cingulate cortex
(sgACC) and the amygdala.

A host of neuroimaging research has focused on the
sgACC and amygdala in depressed individuals (for review see
Ressler and Mayberg, 2007). There is evidence of heightened

activation in the amygdala and sgACC in individuals with
depression when viewing negative stimuli, and post-treatment
decreases in depression symptoms have been associated with
decreased activation in these regions (Ressler and Mayberg,
2007). Studies have also confirmed connectivity between the
amygdala and sgACC (Stein et al., 2007) and this neural circuit
has important relevance for emotion dysregulation, a prominent
characteristic of mood disorders (Joormann and Vanderlind,
2014). Findings have shown greater positive amygdala-sgACC
functional connectivity in depressed adolescents during resting-
state (Connolly et al., 2013) and while processing fearful facial
stimuli (Ho et al., 2014) compared to healthy controls. Similar
results have emerged in relatives of individuals diagnosed with
major depressive disorder (Wackerhagen et al., 2017). Studies of
individuals with social anxiety disorder have also found increased
amygdala activation during emotional face processing (Ball et al.,
2012) and when viewing negative (e.g., fearful or threatening)
stimuli compared to healthy controls (Freitas-Ferrari et al.,
2010; Gentili et al., 2016). In addition, meta-analytic e�ects for
increased activation in the sgACC have been found in individuals
with social anxiety disorder (Gentili et al., 2016). Thus, there
is evidence for amygdala and sgACC hyperactivation in both
depression and social anxiety disorder, and evidence for altered
functional connectivity between these regions in depression.

Elevated levels of neuroticism are a risk factor for depression
and anxiety, including social anxiety (Kotov et al., 2010).
Therefore, neuroticism is often examined as a trait level
individual di�erence that is positively associated with current
levels of anxiety and depression, as well as potentially higher
future levels of psychopathology. Neuroticism is also associated
with more negative responses to stress, increased reactivity
to threatening stimuli (Barlow et al., 2014), and heightened
activation in the amygdala and sgACC (Haas et al., 2007).
Given the relationship between neuroticism, psychopathology,
and threat reactivity, it is important to note that a meta-analysis
of neuroimaging studies examining neuroticism and emotion
processing did not find an association between neuroticism and
amygdala activation (Servaas et al., 2013). Rather, findings from
Servaas et al. (2013) suggest that the role of neuroticism in
amygdala activation appears to be related to altered connectivity
between the amygdala and frontal regions that result in emotion
dysregulation (Servaas et al., 2013). Indeed, Cremers et al.
(2010) found more inverse functional connectivity in the left
amygdala and anterior cingulate cortex among individuals with
higher levels of neuroticism when viewing negative stimuli.
Previous work by Pezawas et al. (2005) also found that inverse
connectivity between the amygdala and sgACC was associated
with increased harm avoidance (a construct highly correlated
with neuroticism that has been associated with a�ective disorder
symptomology; Jylhä and Isometsä, 2006) in short allele carriers
in the 5-HTTLPR polymorphism. In sum, previous findings
suggest that higher levels of neuroticism and altered connectivity
between the amygdala and sgACC may represent a common
neurobiological mechanism underlying the development of social
anxiety disorder and major depression.

In the present study, based on the associations between CD38
genetic variation and a�ective reactivity (Sauer et al., 2012),
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social anxiety, and depression (Tabak et al., 2016), we examined
the relationship between amygdala-sgACC connectivity and
neuroticism in individuals with varying levels of social anxiety
and depression. Using an a priori seed-based approach, we
used psychophysiological interaction (PPI) analysis to investigate
whether CD38 moderates the relationship between neuroticism
and amygdala-sgACC connectivity. We hypothesized that higher
levels of neuroticism would be related to positive connectivity
in this neural circuit in individuals with genotypes (i.e., the
rs3796863 A-allele) that have been associated previously with
enhanced social sensitivity. We also examined variation in a
second CD38 SNP, rs6449182, since there is evidence that this
polymorphism is functional and the G allele is associated with
increased CD38 expression (Jamroziak et al., 2009; Polzonetti
et al., 2012; but see Riebold et al., 2011Q10 ).

METHODS

Participants
The present study includes a subsample from a randomized
controlled trial examining the e�ectiveness of two types of
psychotherapy for social anxiety disorder plus a healthy control
comparison group (see Craske et al., 2014 for full methods).
The current study focused on measurements obtained at
baseline before any intervention began and included participants
who provided a saliva sample for genotyping and fMRI data
(n = 81). Therefore, methods refer to only this aspect of the
study for these participants. Participants were 18–45 years old,
right-handed, and English speaking. They were either free of
medications, or stabilized on medication, and were not currently
involved in behavioral therapy (see Craske et al., 2014 for full
exclusion criteria).

No genotype could be determined for three participants and
six participant’s fMRI data were removed due to high levels
of motion-induced noise (>10% of images had a global signal
intensity >2.5 SD of mean, or were a�ected by motion of
>2.5 mm in any direction; Young et al., 2017). This resulted
in 72 participants (39 male; 33 female; Mean age = 27.56;
Age range = 18–43). Participants self-identified as Caucasian
(45.8%), Asian American (25%), Hispanic (13.9%), and Other
(15.3%). This study was carried out in accordance with the
recommendations of the UCLA O�ce for the Protection
of Human Research Subjects and approved by the UCLA
Institutional Review Board. All participants provided written
informed consent in accordance with the Declaration of Helsinki.

Materials
Neuroticism
The 12-item Eysenck Personality Questionnaire–Revised Short
form (EPQR–S; Eysenck and Eysenck, 1992) was used to measure
neuroticism (a = 0.86).

Psychiatric Diagnosis
Even though we focused on trait levels of neuroticism, the
majority of participants (n = 57) met diagnostic criteria for
social anxiety disorder. Fifteen additional participants did not

meet criteria for any diagnosis (i.e., they were a healthy control
comparison group). Diagnoses were based on the Diagnostic and
Statistical Manual of Mental Disorders, 4th Edition through the
use of the Anxiety Disorders Interview Schedule-IV (Brown et al.,
1994) that were conducted by trained interviewers. Individuals
who met criteria for a clinical disorder all had a current diagnosis
of social anxiety disorder that was either principal or co-principal,
with a clinical severity rating of four or higher (Craske et al.,
2014). Healthy controls did not have a current or previous
psychiatric diagnosis. Among participants who met criteria for
social anxiety disorder, 13.9% (rs3796863 CC n = 7, A carrier
n = 3; rs6449182 CC n = 8, G carrier n = 2) were currently
taking medication for anxiety, depression, or “another emotional
problem” (see Burklund et al., 2015 for additional details).

Genotyping
Participants provided saliva samples using Salivettes (Sarstedt,
Germany). DNA Extraction and genotyping was performed by
Genomeadvisors Inc., La Mirada, CA, United States. CD38
SNPs were genotyped using Taqman SNP Genotyping Assays
(rs6449182: C___1216863_10; rs379663: C___1216944_10) with
the ABI 7900 Sequence Detection System.

Procedure
The EPQR-S was administered 1–2 weeks before participants
completed their fMRI session. Before beginning the fMRI
procedure, participants practiced the reactivity task that involved
viewing and matching images of emotional facial expressions
and geometric shapes (Hariri et al., 2002). In the present study,
our interest was in examining neural reactivity to negative
stimuli (angry, disgusted, or fearful emotional expressions)
obtained from the NimStim Face Stimulus set (Tottenham et al.,
2009). We collapsed across facial expressions in analyses to
examine responses to negative facial expressions in general
compared to shape matching. This resulted in two conditions:
a�ect match and shape match. Our focus of analysis was
on the contrast between matching a�ect vs. matching shapes,
which is a well-validated method of assessing neural activation
associated with viewing emotionally evocative human stimuli
while controlling for attention and motoric responses (as
described in Burklund et al., 2015). This task has been used
in previous research examining amygdala-sgACC functional
connectivity and depression (Pezawas et al., 2005). Participants
also completed two other conditions in which they were asked
to engage in a�ect labeling or gender labeling of the face stimuli
(see Burklund et al., 2015 for further details). Regressors for
these stimuli were included in first level models, but as they are
not the focus of the current investigation, are not reported on
here. A previous study by our research group (Burklund et al.,
2015) also examined neural activation across di�erent clinical
subgroups compared to healthy controls in the bilateral amygdala
as well as right ventral lateral prefrontal cortex during a�ect
match vs. shape match. In contrast, the current study examined
trait levels of neuroticism and focused on functional connectivity
between the amygdala and sgACC.

As described by Burklund et al. (2015) we used a block design
for stimuli presentation with four blocks per condition (a�ect
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match, shape match, a�ect label, gender label; all conditions
were counterbalanced) and six trials per block (trials lasted
5 s, resulting in 30 s blocks). Preceding the stimuli blocks
were 10 s fixation crosshairs and 3 s instruction cues. The
present analyses build on the prior work published in Burklund
et al. (2015) by examining genetic contributions to functional
connectivity between areas as a function of neuroticism rather
than focusing on group di�erences in neural activation as was
done in the prior work. A Macintosh MacBook Pro computer
with MacStim software (WhiteAnt Occasional Publishing)1 and
high-resolution goggles (Resonance Technology, Inc.) were used
to present stimuli. Responses were collected with an fMRI-
compatible button box through a custom USB interface.

fMRI Image Acquisition
Magnetic resonance images were acquired using a Trio 3.0
Tesla Siemens MRI scanner at the UCLA Ahmanson-Lovelace
Brain Mapping Center. For each participant, a high-resolution
structural T2-weighted echoplanar imaging volume (spin-echo,
TR = 5000 ms, TE = 34 ms, matrix size = 128 ⇥ 128,
resolution = 1.6 mm ⇥ 1.6 mm ⇥ 3 mm, FOV = 200 mm, 36
slices, 3 mm thick, flip angle = 90�, bandwidth = 1302 Hz/Px)
was acquired coplanar with the functional scans. Four functional
runs were acquired, with a total of 344 volumes (gradient-echo,
TR = 3000 ms, TE = 25ms, flip angle = 90�, matrix size = 64⇥ 64,
resolution = 3.1 mm x 3.1 mm x 3.0 mm, FOV = 200mm, 36 axial
slices, 3 mm thick, bandwidth = 2604 Hz/Px).

fMRI Pre-processing and Analysis
Imaging data were analyzed using SPM8 (Wellcome Trust
Centre for Neuroimaging, University College London,
United Kingdom)2. Functional images for each participant
were realigned to correct for head motion, co-registered to the
high-resolution structural images, normalized into a standard
stereotactic space as defined by the Montreal Neurological
Institute and smoothed with an 8 mm Gaussian kernel FWHM.
Experimental blocks were modeled using a boxcar function
convolved with the canonical hemodynamic response. Motion
parameters were included in the model as regressors of no
interest. Linear contrasts for a�ect match vs. shape match
were computed at the first-level for each participant using a
fixed-e�ects model. PPI analyses (Friston et al., 1997) were
implemented using generalized PPI (gPPI) within SPM8
(McLaren et al., 2012). These analyses were used to examine
whether the interaction between neuroticism and CD38 variation
predicted functional connectivity between the amygdala and the
sgACC. The right and left amygdala were used as separate seed
regions for these analyses [anatomically defined ROI; Automated
Anatomical Labeling (AAL) library]. We conducted both an
ROI-based analysis and a whole-brain analysis to investigate
general alterations in right and left amygdala connectivity,
focusing on the sgACC. A spherical sgACC ROI (6 mm radius)
was created based on coordinates in a previous study examining
the moderating role of genetic variation on amygdala-sgACC

1www.Brainmapping.org/WhiteAntQ11
2http://www.fil.ion.ucl.ac.uk

connectivity during the same a�ect match task used in the
present study (Pezawas et al., 2005; MNI coordinates: x = 0,
y = 37, z = -2).

Statistical Analysis
ROI analyses: All continuous independent variables and
covariates weremean centered before analyses. Using hierarchical
multiple linear regression, separate analyses were conducted
for each CD38 SNP that included the following predictors
of right (or left) amygdala-sgACC connectivity: (a) the main
e�ect of genotype, (b) the main e�ect of neuroticism, and
(c) the interaction e�ect of genotype x neuroticism. Following
the recommendations of Keller (2014) we also ran analyses
with the inclusion of additional covariates to assess the
robustness of findings including: self-reported race/ethnicity
(Asian, Hispanic, Other; Caucasians were designated as the
comparison group), gender, age, medication status, group (i.e.,
clinical vs. healthy controls), and all genotype x covariate as
well as neuroticism x covariate interactions. The addition of all
robustness covariates and their interactions did not alter the
significance of any primary interaction e�ects.

Significant interactions were followed by simple slopes
analyses to examine the main e�ects of neuroticism for each
genotype group. Analyses were conducted using SPSS 24 and the
PROCESS macro (Hayes and Little, 2017). Figure 1 was created
using Stata version 14. Bonferroni correction was used to correct
for multiple testing for the four primary gene x neuroticism tests
(i.e., rs3796863 x neuroticism for left and then right amygdala,
and the same two tests for rs6449182), resulting in a threshold
of p < 0.0125.

As in previous studies (Feldman et al., 2012; Sauer et al.,
2012; Tabak et al., 2016), we used dominant coding for rs3796863
(CC = 0; A-allele carriers [AC and AA] = 1). Based on previous
work (Jamroziak et al., 2009; Polzonetti et al., 2012), rs6449182
was also coded in a dominant manner (CC = 0; G-allele carriers
[CG or GG] = 1). Genotype frequencies for the total sample of

FIGURE 1 | Interaction Q4of

Q5

rs3796863 x amygdala-sgACC functional
connectivity predicting neuroticism.
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participants who provided genetic and fMRI data were in Hardy–
Weinberg Equilibrium (rs3796863: $2 = 2.6, p = 0.11, rs6449182:
$2 = 2.4, p = 0.12).

Whole brain analyses: Group level whole brain multiple
regression analyses were conducted, entering connectivity SPM
images for the contrast “A�ect Match – Shape Match.”
Regressors included in the model were the CD38 genotype,
neuroticism, and CD38 x neuroticism interaction e�ects.
Gender, age, race/ethnicity, medication status, group, and
all genotype x covariate as well as neuroticism x covariate
interactions were entered as covariates of no interest.

RESULTS

Table 1 displays sample demographics, means, standard
deviations, and genotype frequencies. Our interest in focusing
on neuroticism as a trait level individual di�erence that reflects
anxiety and depression symptoms was confirmed by high
correlations (rs = 0.73) between neuroticism and the General
Distress Anxiety and Depression scales from the Mood and
Anxiety Symptoms Questionnaire (Watson et al., 1995). We
first examined the correlation between CD38 genotype and
neuroticism (including gender, age, race/ethnicity, medication
status, and group as covariates) and found no associations
between rs3796863 genotype (A/C or A/A genotypes coded 1;
C/C genotype coded 0) (r = 0.02, p = 0.88) or rs6449182 genotype
and neuroticism (G/G or C/G genotypes coded 1; C/C genotype
coded 0) (r = 0.05, p = 0.71).

CD38 Variant rs3796863
We used hierarchical multiple linear regression analysis and
found a main e�ect of CD38 rs3796863 genotype on right
amygdala-sgACC functional connectivity (p = 0.017), but no
main e�ect of neuroticism (see Table 2). However, there was
also a significant rs3796863 x neuroticism e�ect (p = 0.002) that
maintained significance following multiple test correction. As
shown in Table 2 and Figure 1, simple slopes analysis showed
a positive association between neuroticism and right amygdala-
sgACC connectivity, but the simple slope for individuals with the
CC genotype was not significant. There were also no main or
interaction e�ects of genotype or neuroticism when examining
left amygdala-sgACC connectivity (See Table 2).

CD38 Variant rs6449182
We followed the same steps and conducted hierarchical multiple
linear regression analysis and found nomain or interaction e�ects
involving CD38 rs6449182 genotype (see Table 3).

Whole Brain Analyses
Full results of whole brain analyses are presented in
Supplementary Tables S1, S2).

DISCUSSION

The present findings are the first showing evidence of a
moderating role for CD38 genetic variation on the association

between neuroticism and amygdala-sgACC connectivity.
Specifically, there was a positive association between neuroticism
and right amygdala-sgACC functional connectivity among
rs3796863 A-allele carriers. Thus, A-allele carriers with
lower levels of neuroticism showed more inverse functional
connectivity between right amygdala and sgACC whereas
A-allele carriers with higher levels of neuroticism showed more
positive connectivity. For illustrative purposes, we created
Supplementary Figure S1 to decompose patterns of functional
connectivity. Results suggested that the present findings may
be driven by A-allele carriers with lower levels of neuroticism,
potentially due to better regulation of the amygdala. This finding
suggests that results from our previous work, in which we
found increased risk for social anxiety and depression over time
among rs3796863 A-allele carriers who experienced greater
interpersonal stress, may have been specific to individuals with
higher levels of neuroticism, who were oversampled (Tabak et al.,
2016). These results also follow the pattern shown by McQuaid
et al. (2016) who found higher levels of depression and suicidal
ideation among individuals with the rs3796863 AA genotype
compared to C-allele carriers (but see Parris et al., 2018; Handley
et al., 2019). Results also suggest that accounting for neuroticism
in future studies of CD38 genetic variation may help to explain
discrepant associations of the rs3796863 A-allele with outcomes
such as greater empathy and altruism (Liu et al., 2017), reduced
risk of autism spectrum disorders (Munesue et al., 2010), but also
higher levels of depression and suicidal ideation (McQuaid et al.,
2016). Since the directionality of associations among A-allele
carriers has di�ered across studies, further research that accounts
for levels of neuroticism is needed. More broadly, the present
finding adds to results from previous studies suggesting a role for
oxytocin system genetic variants in enhanced social sensitivity
(Tabak, 2013).

The present results are also in agreement with studies showing
increased connectivity between the amygdala and sgACC in
individuals with depression during a facial a�ect recognition
task for fearful stimuli (Ho et al., 2014) and among adult first-
degree relatives of individuals with major depressive disorder
when performing a negative a�ect matching task (Wackerhagen
et al., 2017). In addition, the same neural circuit examined in
the present study has also been shown to be moderated by
genetic variation in the serotonin system (i.e., more inverse
amygdala-sgACC connectivity was related to higher levels of
harm avoidance among 5-HTTLPR short allele carriers; Pezawas
et al., 2005). In a previous study examining the relationship
between neuroticism and amygdala-anterior cingulate cortex
(ACC) connectivity, Cremers et al. (2010) found that neuroticism
was related to more inverse functional connectivity between the
left amygdala and ACC. In the present study, our analyses did
not identify a significant relationship between the left amygdala
and the ACC; however, whole brain analyses showed a significant
interaction e�ect of rs3796863 x neuroticism predicting positive
functional connectivity between the right amygdala and the
ACC. One potential explanation for the discrepancy between
the present results and those from Cremers et al. (2010)
is that the sample in the study by Cremers and colleagues
included all healthy individuals, whereas our sample included
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TABLE 1 | DescriptiveQ12 statistics for rs3796863, rs6449182, and major study variables.

Variable All participants rs3796863
A-Allele Carriers

rs3796863 CC
Homozygotes

rs6449182
G-Allele Carriers

rs6449182 CC
Homozygotes

Gender t = �1.34 (70) t = �0.478 (69)

Female 34 (47.2%) 16 (57.1%) 18 (40.9%) 10 (52.6%) 24 (46.2%)

Male 38 (52.8%) 12 (42.9%) 26 (59.1%) 9 (47.4%) 28 (53.8%)

t = 1.44 (58.5) t = �1.22 (69)

Age 27.56 (6.51) 26.21 (6.33) 28.44 (6.54) 29.14 (7.13) 26.94 (6.3)

t = 0.156 (70) t = �0.101 (69)

Neuroticism 6.83 (3.59) 6.75 (3.72) 6.89 (3.54) 7.00 (2.85) 6.90 (3.76)

Race/ethnicity $2 = 2.53 (3, 72) $2 = 2.02 (3, 71)

Caucasian 33 (45.8%) 15 (53.6%) 18 (40.9%) 10 (52.6%) 22 (42.3%)

Hispanic/Latino 10 (13.9%) 2 (7.1%) 8 (18.2%) 2 (10.5%) 8 (15.4%)

Asian American/Pacific Islander 18 (25%) 6 (21.4%) 12 (27.3%) 3 (15.8%) 15 (28.8%)

Other 11 (15.3%) 5 (17.9%) 6 (13.7%) 4 (21.1%) 7 (13.5%)

CD38 genotype

AA 8 (11.1%) – – – –

AC 20 (27.8%) – – – –

CC 44 (61.81%) – – –

*p < 0.05.

TABLE 2 | (a) CD38Q13 rs3796863 and neuroticism predicting right amygdala-sgACC functional connectivity. (b) CD38 rs3796863 and neuroticism predicting left
amygdala-sgACC functional connectivity.

Independent variable b b SE R2

(a)

CD38 genotype �0.312* �0.282 0.128 0.066

Neuroticism 0.020 0.132 0.018 0.097

Genotype x Neuroticism 0.107** 0.798 0.033 0.217

Simple Slope for A-allele carriers

Neuroticism 0.082** 0.608 0.021 0.370

Simple Slope for C/C genotype

Neuroticism �0.025 �0.162 0.024 0.026

(b)

CD38 genotype 0.005 0.005 0.125 0.000

Neuroticism �0.003 �0.020 0.017 0.000

Genotype x Neuroticism 0.052 0.409 0.035 0.032

Simple Slope for A-allele carriers

Neuroticism 0.028 0.244 0.022 0.060

Simple Slope for C/C genotype

Neuroticism �0.024 �0.151 0.024 0.023

The addition of robustness covariates or their interactions did not alter the significance of the primary interaction effects or the significance of simple slopes. *p < 0.05;
**p < 0.005.

healthy individuals as well as individuals with anxiety and
depressive disorders.

Although previous studies have examined the role of genetic
variation in 5-HTTLPR and neuroticism (Pluess et al., 2010;
Kuepper et al., 2012), to date, there is limited research examining
oxytocin related genetic variants and neuroticism. This seems
like an important oversight since, in addition to its role in
social processes, oxytocin is associated with stress responsivity
(Engert et al., 2016; Alley et al., 2019) and evidence suggests
that early life adversity can alter the oxytocin system (Bradley
et al., 2011; Grimm et al., 2014; Smearman et al., 2016). In

addition, neuroticism not only predicts psychopathology over
time (Kendall et al., 2015), but it’s also associated with negative
interpersonal outcomes such as increased reactivity to stressful
events following conflict (Suls et al., 1998), a tendency to use
negative forms of coping following interpersonal stress (Gunthert
et al., 1999), and negative marital outcomes including divorce
(Kelly and Conley, 1987). As studies continue to elucidate
potential relationships between oxytocin and psychopathology
(McQuaid et al., 2014; Gottschalk and Domschke, 2018), the
present results suggest that neuroticism should be a target of
future oxytocin research. This enhanced focus on neuroticism
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TABLE 3 | (a) CD38 rs6449182 and neuroticism predicting right amygdala-sgACC functional connectivity. (b) CD38 rs6449182 and neuroticism predicting left
amygdala-sgACC functional connectivity.

Independent variable b b SE R2

(a)

CD38 genotype �0.011 �0.009 0.149 0.000

Neuroticism 0.023 0.145 0.019 0.021

Genotype x Neuroticism �0.061 �0.382 0.050 0.042

Simple Slope for G-allele carriers

Neuroticism �0.027 �0.200 0.033 0.040

Simple Slope for C/C genotype

Neuroticism 0.033 0.207 0.023 0.043

(b)

CD38 genotype 0.095 0.083 0.138 0.007

Neuroticism �0.001 �0.005 0.018 0.007

Genotype x Neuroticism 0.016 0.107 0.048 0.009

Simple Slope for G-allele carriers

Neuroticism 0.013 0.060 0.051 0.004

Simple Slope for C/C genotype

Neuroticism �0.003 �0.026 0.018 0.001

The additionQ14 of robustness covariates or their interactions did not alter the significance of the primary interaction effects or the significance of simple slopes. *p < 0.05;
**p < 0.01.

would be consistent with elevated levels of anxiety and emotional
reactivity to negative events that have been seen in mice with
deletion of the CD38 gene (Martucci et al., 2019).

Exploratory whole brain analyses showed main e�ects of
neuroticism on regions that are considered part of the default
mode network, such as the temporoparietal junction, precuneus,
and sgACC (Menon, 2011; Li et al., 2014). These findings are
consistent with prior work demonstrating altered connectivity of
functional brain networks, including the default mode network,
in anxiety disorders and depression (Sylvester et al., 2012; Zhu
et al., 2012). Future work exploring altered network connectivity
in the context of oxytocin would be of much interest in
this regard. Additional whole brain analyses suggested that
the interaction of genotype and neuroticism might impact
a other neural networks, including the ACC, dorsal medial
prefrontal cortex, and inferior frontal gyrus regions. These
regions have been implicated in a variety of functions including
the explicit regulation of emotional reactivity in limbic brain
regions (Ochsner and Gross, 2008). The current study was not
designed to investigate emotion regulation, instead focusing on
emotional reactivity to negative stimuli, but investigation of how
neuroticism and CD38 variants interact to impact regulation of
emotional reactions would be of interest in future research.

The present study has several strengths including a sample of
participants with a wide range of social anxiety and depression
levels, the focus on a continuous measure of psychopathology
risk (i.e., neuroticism), and the examination of genetic variation
of a neural circuit through functional connectivity analysis.
In addition, the significant gene x neuroticism interaction
e�ect found in the present study withstood multiple test
correction and the addition of many robustness covariates
and their interaction e�ects. However, several limitations must
also be noted. Although the present sample is slightly larger
than other studies examining CD38 genetic moderation of

neural activation (Sauer et al., 2012, 2013), based on current
recommendations (Duncan and Keller, 2011), our sample is
small for a GxE interaction study. In addition, the size of
the interaction e�ect found in the present study (R2 = 0.11
with robustness covariates; R2 = 0.217 without robustness
covariates) is much larger than current estimates for typical
GxE e�ects (Duncan and Keller, 2011). Another limitation
is our racially/ethnically heterogeneous sample. To account
for this in our statistical analysis, we included race/ethnicity
and genotype x race/ethnicity interactions as covariates,
which is an established method to statistically reduce the
potential e�ects of population stratification (Keller, 2014).
However, the size of our sample prevented us from conducting
additional analyses to examine the generalizability of e�ects
within and across racial/ethnic subgroups. Based on these
limitations, replication studies with a larger sample size
are necessary, and the present results should be viewed as
preliminary in nature.

There is evidence that CD38 gene expression is positively
associated with levels of endogenous oxytocin (Kiss et al.,
2011), but the way in which CD38 SNP rs3796863 may
influence genetic expression is not yet known. Therefore, the
present findings suggest that rs3796863 may be tagging a
functional SNP that was not genotyped in our study (Lin
et al., 2007). In contrast, several studies have found evidence
for a functional role for rs6449182 (Jamroziak et al., 2009;
Polzonetti et al., 2012), but variation in this SNP was not
associated with our outcome. The present study also did not
include a direct measurement of endogenous oxytocin, which
precludes us from examining the relationship between CD38
genetic variation, circulating levels of oxytocin, and neuroticism.
However, previous work has found an association between CD38
genetic variation and di�erences in levels of unextracted oxytocin
(Feldman et al., 2012).
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Conclusion
In sum, we found a positive association between neuroticism and
right amygdala-sgACC functional connectivity in rs37896863
A-allele carriers. Given the correlational nature of functional
connectivity analysis, the extent to which the right amygdala
is a�ecting the sgACC or vice versa cannot be determined.
However, the present results suggest that the more socially
sensitive rs3796863 A-allele may partially explain the
relationship between a known risk factor (i.e., neuroticism) and
promising biomarker (i.e., amygdala-sgACC connectivity) in the
development and maintenance of social anxiety and depression.
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