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Electrocorticographic evidence of a common
neurocognitive sequence for mentalizing about the
self and others
Kevin M. Tan 1✉, Amy L. Daitch2, Pedro Pinheiro-Chagas2, Kieran C. R. Fox 2,3, Josef Parvizi 2,3 &

Matthew D. Lieberman 1

Neuroimaging studies of mentalizing (i.e., theory of mind) consistently implicate the default

mode network (DMN). Nevertheless, the social cognitive functions of individual DMN

regions remain unclear, perhaps due to limited spatiotemporal resolution in neuroimaging.

Here we use electrocorticography (ECoG) to directly record neuronal population activity

while 16 human participants judge the psychological traits of themselves and others. Self- and

other-mentalizing recruit near-identical cortical sites in a common spatiotemporal sequence.

Activations begin in the visual cortex, followed by temporoparietal DMN regions, then finally

in medial prefrontal regions. Moreover, regions with later activations exhibit stronger func-

tional specificity for mentalizing, stronger associations with behavioral responses, and

stronger self/other differentiation. Specifically, other-mentalizing evokes slower and longer

activations than self-mentalizing across successive DMN regions, implying lengthier pro-

cessing at higher levels of representation. Our results suggest a common neurocognitive

pathway for self- and other-mentalizing that follows a complex spatiotemporal gradient of

functional specialization across DMN and beyond.
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Humans are social by nature: our central nervous systems
have evolved many mechanisms to support our rich and
complex social worlds1. Although high levels of sociality

are seen throughout the animal kingdom2,3, humans are excep-
tional in their capacity for mentalizing: the ability to consider the
mental states and traits of others and oneself4,5. The field of social
neuroscience seeks to understand how mentalizing and other
social functions are implemented at the level of brain and
biology6. In humans, social neuroscience primarily relies on
functional magnetic resonance imaging (fMRI), a neuroimaging
modality with high spatial resolution but low temporal
resolution7. Hundreds of fMRI studies have shown that menta-
lizing recruits default mode network (DMN) regions – including
temporoparietal junction (TPJ), posteromedial cortex (PMC), and
medial prefrontal cortex (mPFC) – with remarkable consistency
across countless mentalizing paradigms instantiated in various
sensory modalities4,8–12. Nevertheless, the specific social cognitive
functions of individual DMN regions remain unclear. When seen
through fMRI, DMN regions appear to respond concurrently, yet
electrophysiological studies demonstrate that critical neurocog-
nitive dynamics occur at millisecond timescales throughout
DMN13. Thus, the limited temporal resolution of fMRI may
preclude more precise neurocognitive accounts of mentalizing
and its component processes.

Several studies have investigated the fast spatiotemporal
dynamics of mentalizing processing using source-space electro-
encephalography (EEG) and magnetoencephalography (MEG),
neuroimaging modalities with millisecond temporal resolution
but coarse spatial resolution14. These studies reveal a general
spatiotemporal sequence of cortical recruitment, starting in visual
cortex, followed by mirror neuron system regions (MNS; e.g.,
intraparietal sulcus and premotor cortex), then lastly in DMN
regions15–20. These findings exemplify the emerging consensus
that visual representations are used by MNS to identify obser-
vable actions (e.g., grasping for food), which are then used by
DMN to infer unobservable mental states (e.g., hunger)8,21–24.
Taken together, EEG/MEG studies of mentalizing suggest that
visual cortex, MNS, and DMN act as a hierarchical neurocogni-
tive pathway that transforms low-level visual inputs into high-
level mentalistic inferences. However, despite broad agreement at
the network level, these studies report inconsistent recruitment
across individual DMN regions. These inconsistencies may reflect
limitations in EEG/MEG source localization, particularly in dee-
per regions such as mPFC and PMC25, which were not sampled
in many of these studies. As such, the sequence of mentalizing
processing across individual DMN regions remains unclear.

We sought a more spatiotemporally precise and mechanistic
account of mentalizing by exploring neuronal population activity
across individual DMN regions and beyond. Leveraging the
benefits of human intracranial electrophysiology26, we recorded
high-frequency broadband activity (HFB; 70‒180 Hz), which
reflects the rapid aggregate spiking of neuronal populations27. In
contrast, fMRI measures slow metabolic changes, although fMRI
and HFB correspond in the anatomy and direction of measured
effects (see Parvizi & Kastner, 201926). We show that self- and
other-mentalizing share a complex spatiotemporal gradient of
functional specialization at millisecond, millimeter, and cross-
regional scales. Our findings demonstrate that high spatio-
temporal resolution methods can provide critical insights on the
neurocognitive mechanisms of human social cognition.

Results
Data and design. We recruited sixteen human participants who
had electrocorticography (ECoG) electrodes surgically implanted
onto the cortical surface for epilepsy monitoring and treatment

(Supplementary Table 2). Recordings were obtained from all 2125
electrode sites in our cohort (Fig. 1b). Our behavioral task
(Fig. 1a) consisted of true/false text prompts for three conditions
of interest: self-mentalizing (e.g., “I am honest”), other-
mentalizing (e.g., “My neighbor is honest”), and a non-social
‘cognitive’ task involving simple arithmetic (e.g., “9+ 86= 95”;
Supplementary Table 4). Sites and trials underwent exclusion
criteria for epileptic activity, noise, poor behavioral performance
(trials only), and statistical outliers (see Methods).

We began by parcellating the brain into seven regions-of-
interests (ROIs; Fig. 1c) using each participant’s native-space
cortical surface (Supplementary Fig. 2). We included six DMN
ROIs that are strongly implicated in mentalizing12: temporopar-
ietal junction (TPJ), anterior temporal lobe (ATL), posteromedial
cortex (PMC), anteromedial prefrontal cortex (amPFC), dor-
somedial prefrontal cortex (dmPFC), and ventromedial prefrontal
cortex (vmPFC). Visual cortex was included as a control ROI. Of
2125 electrode sites, 555 were included in our ROIs.

We examined HFB activity from each site in two ways: single-
trial and trial-averaged analyzes (Fig. 1d–f). Single-trial analysis
compared trialwise HFB responses relative to the pre-stimulus
baseline preceding each trial (pFDR < 0.05, corrected across
timepoints, trials, and sites). Single-trial analysis captured five
key metrics of HFB activations: onset, peak, and offset latencies,
duration, and peak power (defined in Fig. 1e). Trial-averaged
analysis used linear mixed-effects models (LMEMs) to estimate
mean timecourses of task-evoked HFB power relative to pre-
stimulus baseline (Fig. 1f). Trial-averaged analysis identified sites
with significant activations or deactivations for each task
condition (pFDR < 0.05, corrected across timepoints and sites).
See Fig. 2 for within-site analyses of exemplar ROI sites. All
statistical tests herein were two-tailed.

Functional specificity for mentalizing strengthens from visual
cortex to mPFC. To explore the fast spatiotemporal dynamics of
mentalizing processing, we first examined its functional-anatomic
foundations. We began by identifying sites with significant HFB
responses to either self- or other-mentalizing, regardless of
functional specificity or selectivity (Fig. 3a, b). Using trial-
averaged results, sites were considered ‘mentalizing-active’ (cyan)
or ‘mentalizing-deactive’ (orange) if they produced higher or
lower HFB power, respectively, relative to pre-stimulus baseline
(pFDR < 0.05). Sites were considered ‘mentalizing-nonresponsive’
if they produced nonsignificant HFB responses to mentalizing.
We found mentalizing-active sites in nearly all parts of cortex,
while mentalizing-deactive sites were rarer and generally located
outside DMN (Fig. 3a). Overall, most cortical sites were
mentalizing-nonresponsive (55% whole-brain; Fig. 3b).

Next, we examined the functional specificity of mentalizing-
active sites (Fig. 3c, d). Using trial-averaged results, we identified
which mentalizing-active sites also produced significant HFB
responses to arithmetic (cognitive task) relative to pre-stimulus
baseline (pFDR < 0.05). Additionally, we directly compared single-
trial peak power across mentalizing and arithmetic using robust
regression (pFDR < 0.05, corrected across sites). Sites were
considered ‘mentalizing-specific’ (light and dark turquoise) if
they were (1) mentalizing-active but not arithmetic-active, and
(2) produced significantly higher peak power for mentalizing over
arithmetic. Sites were considered ‘non-specific’ (lime, pink, and
red) if they coactivated for mentalizing and arithmetic, regardless
of peak power differences.

Overall, most mentalizing-active sites were non-specific (68%
whole-brain), while the remaining mentalizing-specific sites were
unevenly distributed across cortex (Fig. 3c, d). Within our ROIs,
the lowest mentalizing-specificity was found in visual cortex (1%).
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Intermediate mentalizing-specificity was found in TPJ (38%),
ATL (32%), and PMC (58%). Very high mentalizing-specificity
was found in amPFC (87%), dmPFC (94%), and vmPFC (100%).
Taken together, these results show a gradient of mentalizing-
specificity from visual cortex to mPFC.

Mentalizing activations propagate from visual cortex to mPFC.
Next, we explored the timing of mentalizing-evoked activations
across ROIs. To this end, we analyzed single-trial HFB latency
metrics from mentalizing-active ROI sites (Fig. 3e). Pairwise ROI
comparisons (Fig. 3f) measured trial-by-trial ROI differences

Fig. 1 Data and design. Brain maps in main figures plot all sites in left-hemisphere Montreal Neurological Institute space for display purposes. a Behavioral
task (see Supplementary Table 4). bMap of electrode sites colored by participant. c Region-of-interest sites (ROI; colored circles) and non-ROI sites (black
dots). ROIs were defined using each participant’s native cortical surface. d–f Within-site analytic pipeline using a mid-cingulate exemplar site. d High-
frequency broadband power (HFB; 70–180 Hz) across timepoints and trials. Black areas indicate discarded timepoints (post-trial). e Single-trial analysis
compared evoked HFB power versus pre-stimulus baseline (Welch’s tests) to provide five key HFB metrics. Duration: total timepoints with significant
activations (brown areas; pFDR < 0.05, corrected across timepoints, trials, and sites). Onset Latency: earliest timepoint with significant activation (green
squares). Peak Latency and Peak Power: timepoint and magnitude, respectively, of the strongest activation (white squares). Offset Latency: latest timepoint
with significant activation (red squares). Gray areas indicate nonsignificant (NS) activations. f Trial-averaged analysis identified sites that were active,
deactive, or nonresponsive for each task condition. Sites were considered ‘active’ or ‘deactive’ if evoked HFB power was significantly higher or lower,
respectively, than pre-stimulus baseline (pFDR < 0.05, corrected across timepoints and sites). Colored lines show mean timecourses of evoked HFB power
(β) estimated by linear mixed-effects modeling (nested within Trial). Thick solid lines indicate significant responses. Thin dashed lines indicate
nonsignificant responses. Shaded areas indicate standard error of β. Abbreviations: s= seconds, ms=milliseconds, ITI= inter-trial interval,
RTBehav= behavioral response time, Visual= visual cortex, ATL= anterior temporal lobe, TPJ= temporoparietal junction, PMC= posteromedial cortex,
amPFC= anteromedial prefrontal cortex, dmPFC= dorsomedial prefrontal cortex, vmPFC= ventromedial prefrontal cortex, pFDR= p-value adjusted for
false discovery rate.
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while controlling for behavioral response times (RTBehav) and
participant-related heterogeneity using LMEMs (nested within
Trial within Participant). Critically, pairwise comparisons only
included participants with mentalizing-active sites in both ROIs.

We found that visual cortex produced the earliest activation
onsets (M= 101 ± 1 ms) of any ROI (Fig. 3f; pFDR < 0.05,
corrected across unique ROI pairs). Afterwards, mid-latency
onsets were produced by TPJ (M= 303 ± 7 ms), ATL
(M= 316 ± 7 ms), and PMC (M= 322 ± 5 ms), with nonsignifi-
cant differences between them. Later onsets were produced by
amPFC (M= 465 ± 10 ms) and dmPFC (M= 466 ± 7 ms), with
nonsignificant differences between them, followed lastly by
vmPFC (M= 537 ± 15ms). Critically, propagation of activations
across ROIs had robust trial-by-trial consistency (Supplementary
Fig. 3). Peak latencies showed a similar pattern of cross-ROI
differences as onsets, although intra-mPFC differences were
nonsignificant (Fig. 3f). Offset latencies showed the least cross-
ROI differentiation. Earlier offsets were produced by visual
cortex, TPJ, and ATL, with nonsignificant differences between
them. Later offsets were produced by amPFC, dmPFC, and
vmPFC, with nonsignificant differences between them. We also
performed post-hoc analysis of offset latencies relative to RTBehav

(Fig. 4c), revealing that mPFC activations more closely preceded
RTBehav than other ROIs combined (b20204= 138 ± 31ms,
p= 4.28e−6). Nevertheless, despite these robust cross-ROI
latency differences, ROIs predominantly activated at overlapping

times (Figs. 2, 3e, 5c and 6; single-participant results in
Supplementary Fig. 2).

In sum, mentalizing evoked largely concurrent activations
across ROIs, as might be expected from neuroimaging literature.
Nonetheless, fine-scale cross-ROI differences in onset, peak, and
offset latencies depict an overarching spatiotemporal sequence of
activation from visual cortex to mPFC. This sequence extended
across individual sites throughout cortex (Fig. 4a).

A spatiotemporal gradient of mentalizing-specificity from
visual cortex to mPFC. Thus far, we have found spatial gradients in
the timing (Fig. 3e, f) and functional specificity (Fig. 3c, d) of neu-
ronal population responses to mentalizing. To examine the corre-
spondence between these gradients, we used logistic mixed-effects
classification to predict mentalizing-specificity from mean onset
latencies across mentalizing-active ROI sites, nested within Partici-
pant (Fig. 4b). We found that the probability of mentalizing-
specificity over non-specificity rose by 1.4% per one-millisecond
increase in onsets (odds ratio= 1.014, b255= 0.014 ± 0.002, p= 9.21e
−11). This robust effect was largely attributable to between-ROI
differences, as within-ROI effects were weaker and significant only in
TPJ (p= 0.047), ATL (p= 0.039), and PMC (p= 0.005). In sum,
ROI sites with later activations were more likely to be mentalizing-
specific.

These results portray a neurocognitive sequence28–31 that
reflects both the timing and specificity of mentalizing processing

Fig. 2 Exemplar ROI sites. a Map of exemplar ROI sites, which were identified as mentalizing-active versus baseline in trial-averaged analysis (see Fig. 1f;
pFDR < .05, corrected across timepoints and sites). Circle fill color indicates self/other selectivity, which was determined by comparing single-trial HFB peak
power (see Fig. 1e) across mentalizing type via robust regression (pFDR < 0.05, corrected across sites). Circle outline indicates significant HFB responses to
the cognitive (arithmetic) task versus baseline (pFDR < 0.05, corrected across timepoints and sites). b–k Trial-averaged timecourses of evoked HFB power
(β) from exemplar sites in panel a. Thick solid lines indicate significant responses versus baseline (pFDR < 0.05, corrected across timepoints and sites). Thin
dashed lines indicate nonsignificant (NS) responses. Shaded areas indicate standard error of β. †Excluded from ROI analyzes due to outlier thresholds (see
Methods). Abbreviations: HFB= high-frequency broadband (70‒180 Hz). ROI= region-of-interest, Visual= visual cortex, ATL= anterior temporal lobe,
TPJ= temporoparietal junction, PMC= posteromedial cortex, amPFC= anteromedial prefrontal cortex, dmPFC= dorsomedial prefrontal cortex,
vmPFC= ventromedial prefrontal cortex. Source data are provided as a Source Data file.
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Fig. 3 A neurocognitive sequence for mentalizing. Brain maps plot all sites on left hemisphere with approximate ROI outlines (full views in Supplementary
Figs. 6 and 7). a, b Sites identified as active, deactive, or nonresponsive for mentalizing versus baseline (see Figs. 1f and 2; pFDR < 0.05, corrected across
timepoints and sites). c, d Functional specificity of mentalizing-active sites. †Mentalizing-specific sites, defined as mentalizing-active but not cognitive-
active (pFDR < 0.05, corrected across timepoints and sites) with significantly higher peak power for mentalizing (pFDR < 0.05, corrected across sites). §Non-
specific sites, defined as mentalizing-active and cognitive-active. e Mean ROI activation latencies. Left and right floating bar edges depict onsets and
offsets, respectively, while diamonds depict peaks (see Fig. 1e). Error bars depict standard error of the mean. f Pairwise ROI comparisons of activation
latencies. Black diagonal squares show ROI means. Off-diagonal squares show estimates for ROIX - ROIY (controlled for behavioral response times).
Orange and blue squares indicate significant differences; color intensity indicates effect size (pFDR < 0.05, corrected across unique ROI pairs). White
squares indicate nonsignificant (NS) differences. Pairwise comparisons used linear mixed-effect models restricted to participants with mentalizing-active
sites in both ROIs (nested within Trial within Participant). See Table 1 for n of panels e, f. Abbreviations: Mz=mentalizing (collapsed across self and other),
Cog= cognitive task (arithmetic), Visual= visual cortex, ATL= anterior temporal lobe, TPJ= temporoparietal junction, PMC= posteromedial cortex,
amPFC= anteromedial prefrontal cortex, dmPFC= dorsomedial prefrontal cortex, vmPFC= ventromedial prefrontal cortex, Whole Brain = all relevant
sites in cortex, ROI= region-of-interest. Source data are provided as a Source Data file.
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Fig. 4 Spatiotemporal gradients of functional and behavioral relevance for mentalizing. a Mean onset latencies of mentalizing-active sites (pFDR < 0.05,
corrected across timepoints and sites). All sites plotted on left hemisphere with approximate ROI outlines (full views in Supplementary Fig. 8). b Mean
activation onset latencies of ROI sites by functional specificity (see Fig. 3c). Color indicates ROI. Logistic mixed classification estimated the odds ratio (OR)
of mentalizing-specificity over non-specificity per millisecond increase in onsets (p= 9.21e−11, n= 257 sites). c RTBehav versus ROI activation offset
latencies. Error bar indicates standard error of the mean. Offsets in medial prefrontal cortex (mPFC) ROIs more closely preceded RTBehav than other ROIs
combined (b20204= 138 ± 31 ms, p= 4.28e−6, two-tailed), as per post-hoc LMEM. d, e Associations between RTBehav and peak activation metrics within
ROIs. Slope estimates (b) were controlled for behavioral response choices and stimulus visual dissimilarity via LMEMs. See Table 1 for exact statistics and
n. d RTBehav and activation peak latency. Slopes (b) estimate change in peak latency per millisecond increase in RTBehav. Horizontal slopes (b= 0) would
indicate purely stimulus-locked activity, while 45° slopes (b= 1) would indicate purely RTBehav-locked activity (see DiCarlo & Maunsell, 2005106). e RTBehav
and peak power (activation magnitude). Slopes (b) estimate change in peak power per 1000ms increase in RTBehav. *Significant OR and b estimates have
red font (p < 0.05, uncorrected, two-tailed). Abbreviations: RTBehav= behavioral response time. ROI= region-of-interest, Visual= visual cortex,
ATL= anterior temporal lobe, TPJ= temporoparietal junction, PMC= posteromedial cortex, amPFC = anteromedial prefrontal cortex, dmPFC =
dorsomedial prefrontal cortex, vmPFC= ventromedial prefrontal cortex, z= z-score, LMEM= linear mixed-effect model. Source data are provided as a
Source Data file.
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Fig. 5 A common neurocognitive sequence for self- and other-mentalizing. a Functional anatomy of self- and other-mentalizing. Circles represent sites
identified as coactive for both mentalizing types versus baseline (pFDR < 0.05, corrected across timepoints and sites), colored by self/other differences in
peak power (pFDR < 0.05, corrected across sites; see Fig. 2). Squares represent sites identified as active for only one mentalizing type with significantly
higher peak power for that mentalizing type. Black dots represent sites with nonsignificant mentalizing activations. All sites plotted on left hemisphere with
approximate ROI outlines (full views in Supplementary Fig. 9). b Proportions of mentalizing-active ROI sites exhibiting the selectivity profiles in a. ‘Whole
Brain’ refers to all mentalizing-active sites in cortex. cMean activation latencies by mentalizing type and ROI. Left and right floating bar edges depict onsets
and offsets, respectively, while diamonds depict peaks (see Fig. 1e). Error bars depict standard error of the mean. *Significant self/other differences for
peaks (black) and offsets (red); p < 0.05, uncorrected, controlled for RTBehav and stimulus visual dissimilarity, two-tailed. Activation duration (d) and
magnitude (e; peak power) by mentalizing type and ROI. *Red asterisks indicate significant self/other differences (p < 0.05, uncorrected, controlled for
RTBehav and stimulus visual dissimilarity, two-tailed). See Table 1 for exact statistics and n for c–e. Abbreviations: ROI= region-of-interest, Visual= visual
cortex, ATL= anterior temporal lobe, TPJ= temporoparietal junction, PMC= posteromedial cortex, amPFC= anteromedial prefrontal cortex,
dmPFC= dorsomedial prefrontal cortex, vmPFC= ventromedial prefrontal cortex, z= z-score. Source data are provided as a Source Data file.
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Fig. 6 Summary of evoked neuronal activity. a Sites with significant HFB responses during specific time windows versus pre-stimulus baseline, colored by
LMEM t-values (pFDR < 0.05, corrected across sites and time windows, two-tailed). All sites plotted on left hemisphere with approximate ROI outlines.
b–h Grand-average timecourses of evoked HFB power (β) within ROIs (LMEM-estimated). Thick solid lines indicate significant responses versus pre-
stimulus baseline (pFDR < 0.05, corrected across ROIs and timepoints, two-tailed). Thin dashed lines indicate nonsignificant responses. Shaded areas
indicate standard error of β. Abbreviations: HFB= high-frequency broadband (70–180 Hz), LMEM= linear mixed-effects model, ROI= region-of-interest,
Visual= visual cortex, ATL= anterior temporal lobe, TPJ= temporoparietal junction, PMC= posteromedial cortex, amPFC= anteromedial prefrontal cortex,
dmPFC= dorsomedial prefrontal cortex, vmPFC= ventromedial prefrontal cortex. Source data are provided as a Source Data file.
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across ROIs. Within this sequence, visual cortex appears to be a
pre-mentalizing stage, as it produced the earliest activations and
negligible mentalizing-specificity. Next, temporoparietal DMN
regions (TPJ, ATL, and PMC) appear to be lower-level
mentalizing stages, as they produced mid-latency activations
and intermediate mentalizing-specificity. Finally, mPFC regions
(amPFC, dmPFC, and vmPFC) appear to be higher-level
mentalizing stages, as they featured the latest activations and
overwhelming mentalizing-specificity.

Behavioral responses are best predicted by TPJ and dmPFC
activity. To explore the relationships between neuronal and
behavioral responses, we determined which ROIs predicted
RTBehav and ChoiceBehav (choosing ‘true’ or ‘false’ for task
prompts) by analyzing single-trial HFB metrics from mentalizing-
active ROI sites. We used LMEMs to simultaneously estimate
neuronal associations with RTBehav and ChoiceBehav while con-
trolling for stimulus visual dissimilarity (see Supplementary
Methods), nested within Site and Participant. We found that
onset latencies had significant (p < 0.05) positive associations with
RTBehav in visual cortex, TPJ, PMC, amPFC, and dmPFC
(Table 1). Moreover, we found significant positive associations
between RTBehav and peak latencies (all DMN ROIs; Fig. 4d),
offset latencies (all ROIs; Table 1), and activation duration (all
ROIs). In contrast, activation magnitude (peak power) had sig-
nificant RTBehav associations in only two ROIs: TPJ and dmPFC
(Fig. 4e). Intriguingly, dmPFC was the only ROI that significantly
predicted ChoiceBehav (Table 1). Taken together, behavioral
responses were best predicted by TPJ and dmPFC, which had
more numerous significant neurobehavioral associations than
other ROIs.

Next, we examined whether behavioral responses were better
predicted by activity in successive ROI sites. Specifically, we
compared mean onset latencies (Fig. 4a) and within-site RTBehav

random effect sizes (b from analyses in previous paragraph) using
LMEMs nested within Participant. We found that sites with later
onsets had stronger RTBehav effects for peak latency
(b255= 0.972 ± 0.094, p= 1.51e-23) but not peak power
(b255= 0.019 ± 0.074, p= 0.796). In sum, RTBehav was better
predicted by successive ROIs in terms of activation latency
(Fig. 4d) but not activation magnitude (Fig. 4e).

Self- and other-mentalizing share a common neuroanatomical
basis. To fractionate mentalizing’s neurocognitive sequence
across mentalizing type, we first explored the anatomical inter-
relations between self- and other-mentalizing (Fig. 5a, b). We
therefore identified sites that produced significant trial-averaged
activations for each mentalizing type relative to baseline (pFDR <
0.05, corrected across timepoints and sites). We also directly
compared self/other differences in single-trial peak power using
robust regression (pFDR < 0.05, corrected across sites). Sites were
considered ‘self-only’ or ‘other-only’ if they (1) produced sig-
nificant trial-averaged activations for only one mentalizing type,
and (2) produced significantly greater peak power for that
mentalizing type over another. Sites that activated for both
mentalizing types were labeled by peak power differences: ‘self-
greater’ (Self > Other), ‘other-greater’ (Other > Self), or ‘non-
selective’ (Self=Other).

We found that mentalizing-active sites were overwhelmingly
coactive for both mentalizing types (non-selective + self-greater
+ other-greater = 97% whole-brain; Fig. 5a,b). Moreover, non-
selective sites formed the largest category in all ROIs and the
whole-brain (range: 55-86%). We also compared amounts of ‘self-
selective’ sites (self-only + self-greater) versus ‘other-selective’
sites (other-only + other-greater) using McNemar χ2 (Yates-

corrected; df= 1). This revealed that other-selective sites
significantly (p < 0.05) outnumbered self-selective sites in visual
cortex (3% self/23% other; χ2= 9.39), PMC (6% self/34% other;
χ2= 8.45), and the whole-brain (5% self/13% other; χ2= 24.40).
Nonsignificant self/other differences were found in TPJ (5% self/
14% other; χ2= 0.57), ATL (3% self/11% other; χ2= 0.37),
amPFC (9% self/13% other; χ2= 0), dmPFC (6% self/8% other;
χ2= 0), and vmPFC (0% self/45% other; χ2= 3.20).

In sum, self- and other-mentalizing recruited near-identical
cortical sites in a largely non-selective manner, though selective
sites were mostly other-selective in visual cortex and PMC.
Unexpectedly, other-selective and self-selective sites did not
significantly outnumber each other in TPJ, amPFC, and dmPFC,
which contradicts previous fMRI work from our group32 and
elsewhere33–35.

Other-mentalizing evokes slower and lengthier activations
across successive ROIs. Given the highly overlapping neuroa-
natomy of self- and other-mentalizing, we explored whether self/
other differences might be better characterized by fast spatio-
temporal functional dynamics. We therefore examined single-trial
HFB metrics from mentalizing-active ROI sites. Mentalizing type
was analyzed by LMEMs that controlled for RTBehav and visual
dissimilarity, nested within Site and Participant.

We found that self- and other-mentalizing evoked a common
spatiotemporal sequence of HFB activations across ROIs (Fig. 5c).
Within this sequence, onset latencies showed nonsignificant self/
other differences (Table 1). However, other-mentalizing evoked
significantly (p < 0.05) later peaks and offsets than self-
mentalizing in all DMN ROIs except TPJ (Fig. 5c). Concordantly,
activation duration was significantly longer for other- versus self-
mentalizing in all DMN ROIs except TPJ (Fig. 5d). In contrast,
self/other differences in activation magnitude were significant
only in PMC, which produced greater peak power for other-
mentalizing (Fig. 5e). Crucially, although HFB metrics often
reflected RTBehav and visual dissimilarity, significant self/other
differences were ultimately dissociable from these covariates
(Supplementary Table 1).

Next, we examined whether self/other differences became stronger
in successive ROI sites. We therefore compared mean onset latencies
(Fig. 4a) with single-site random effect sizes (b from analyses in
previous paragraph) for peak latency (Fig. 5c) and peak power (e.g.,
self/other selectivity; Fig. 5e) using LMEMs nested within Participant.
We found that later onsets predicted stronger self/other differences in
peak latencies (b255= 0.404 ± 0.131, p= 0.002). However, onsets did
not significantly predict peak power (b255=−0.303 ± 0.0744,
p= 0.796).

In sum, we found that self- and other-mentalizing recruited
near-identical sites in a common spatiotemporal sequence
(Fig. 5a–c). Within this sequence, other-mentalizing evoked
slower (Fig. 5c) and lengthier (Fig. 5d) activations in all DMN
ROIs except TPJ. Intriguingly, successive ROI sites had greater
self/other differentiation in the timing, rather than selectivity, of
activations. Taken together, self/other functional differences were
primarily characterized by the timing of activations throughout
successive DMN regions.

Summary of evoked neuronal activity. To summarize task-
evoked neuronal population activity (Fig. 6a), we identified sites
with significant HFB responses during specific time windows
relative to pre-stimulus baseline (pFDR < 0.05, corrected across
sites and time windows). From 0-250ms, activations were largely
localized to visual cortex with negligible task condition differ-
ences. From 250–500 ms, activations also encompassed tempor-
oparietal and lateral frontal regions, where mentalizing and
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arithmetic (cognitive task) began to diverge. Specifically, in
temporoparietal DMN regions, self- and other-mentalizing pri-
marily evoked activations, while arithmetic evoked interdigitated
activations and deactivations. From 500–750 ms, mentalizing
activations began to encompass mPFC, especially for self-
mentalizing. In contrast, arithmetic evoked mPFC deactivations,
which continued for all successive time windows. From
750–1000 ms, both mentalizing types evoked similar mPFC
activations. From 1000–2000 ms, other-mentalizing evoked more
sustained activations than self-mentalizing, particularly in mPFC.

Controlling for stimulus visual dissimilarity (VD). To distin-
guish mentalizing-related neuronal effects (mentalizing type,
RTBehav, and ChoiceBehav) from stimulus VD (e.g., prompt
length), we used computer vision36,37 (see Supplementary
Methods). After controlling for VD, mentalizing-related effects
were still significant in all DMN ROIs (Figs. 4d, e and 5c–e and
Table 1). However, in visual cortex, marked self/other differences
in peak power became nonsignificant (Fig. 5e). In sum,
mentalizing-related effects in DMN ROIs were not explained by
prompt length and other visual features.

Behavioral results. To confirm that participants performed
mentalizing for task prompts, we analyzed ChoiceBehav for self/
other biases towards positive or negative affective traits (Supple-
mentary Fig. 4c) using logistic mixed-effects classification (nested
within Trait within Participant). Overall, we found a greater
probability of ‘true’ choices for positive versus negative traits (odds
ratio= 2.53, b1471= 0.931 ± 0.069, p= 1.04e−39). This bias was
stronger during self-mentalizing versus other-mentalizing (odds
ratio= 1.38, b1471= 0.326 ± 0.064, p= 4.56e−7). These results
indicate that participants engaged the mentalistic content in task
prompts with a self-positivity bias, which is a canonical feature of
mentalizing38–40. Moreover, high accuracy in arithmetic trials
(median= 92.5%) suggests effortful attention to task prompts
(Supplementary Fig. 4b).

To determine whether RTBehav varied by Mentalizing Type,
ChoiceBehav, and stimulus visual features (VD1 and VD2; see
Supplementary Results), we used a LMEM nested within
Participant (Supplementary Fig. 4a). We found faster RTBehav

for self-mentalizing (M= 2406 ± 49 ms) versus other-mentalizing
(M= 2797 ± 52 ms; t1646= 2.85, p= 0.004). Additionally, RTBehav

was faster for ‘true’ choices (M= 2482 ± 59 ms) versus ‘false’
choices (M= 2807 ± 45 ms; t1646= 2.16, p= 0.031). However, the
Mentalizing Type x ChoiceBehav interaction was nonsignificant
(t1646= 1.47, p= 0.140). Unsurprisingly, longer prompt lengths
(VD1) elicited slower RTBehav (t1646= 4.85, p= 1.36e-6). Mean-
while, remaining visual features (VD2) evoked nonsignificant
RTBehav effects (t1646=−0.25, p= 0.803). In sum, mentalizing
type, ChoiceBehav, and VD1 had significant and dissociable effects
on RTBehav.

Discussion
Using electrocorticography (ECoG), we probed the neurocogni-
tive substrates of mentalizing at the level of neuronal populations.
We found that mentalizing about the self and others recruited
near-identical cortical sites (Fig. 5a, b) in a common spatio-
temporal sequence (Figs. 5c and 6). Within our ROIs, activations
began in visual cortex, followed by temporoparietal DMN regions
(TPJ, ATL, and PMC), and lastly in mPFC regions (amPFC,
dmPFC, and vmPFC; Fig. 3e, f). Critically, regions with later
activations exhibited greater functional specialization for menta-
lizing as measured by three metrics: functional specificity for
mentalizing versus arithmetic (Figs. 3c, d and 4b), self/other
differentiation in activation timing (Fig. 5c, d), and temporal

associations with behavioral responses (Fig. 4d and Table 1).
Taken together, these results reveal a common neurocognitive
sequence28–31 for self- and other-mentalizing, beginning in visual
cortex (low specialization), ascending through temporoparietal
DMN areas (intermediate specialization), then reaching its apex
in mPFC regions (high specialization).

Our results are consistent with gradient-based models of brain
function, which posit that concrete sensorimotor processing in
unimodal regions (e.g., visual cortex) gradually yields to
increasingly abstract and inferential processing in ‘high-level’
transmodal regions like mPFC41,42. We found that the strength of
self/other differences in activation timing increased along a gra-
dient from visual cortex to mPFC. Specifically, other-mentalizing
evoked slower (Fig. 5c) and lengthier (Fig. 5d) activations than
self-mentalizing throughout successive DMN ROIs. These self/
other functional differences corresponded with self/other differ-
ences in RTBehav (Supplementary Fig. 4), although the two were
often dissociable (Table 1). Thus, perhaps because we know
ourselves better than others, other-mentalizing may require
lengthier processing at more abstract and inferential levels of
representation, ultimately resulting in slower behavioral
responses.

What might our results imply about extant fMRI findings?
Hundreds of fMRI studies consistently suggest that: (1) TPJ and
dmPFC are most crucial for mentalizing6,8,11,12,43–46, and (2)
dmPFC is selective for thinking about others over oneself 32–35.
However, when examined with ECoG, we found that both pieces
of received wisdom are not what they seem. Below, we discuss
both issues before moving onto our peculiar vmPFC results, and
then conclude with systems-level discussion.

Unsurprisingly, we found that DMN regions such as TPJ and
dmPFC contained higher proportions of ‘mentalizing-specific’
sites (i.e., mentalizing-active but not cognitive-active) relative to
the whole-brain average (Fig. 3c, d). The spatial distribution of
mentalizing-specific sites roughly resembles the ‘mentalizing net-
work’ reported in countless fMRI studies4,6,8–11,47. However, our
DMN ROIs were by no means functionally homogenous. Relative
to other ROIs, TPJ and dmPFC activity best predicted RTBehav

(Fig. 4d, e and Table 1), supporting the notion that both regions
are most crucial for mentalizing performance6,12,43,45,46,48,49.

We also found numerous functional distinctions between TPJ
and dmPFC, which is surprising given their remarkably similar
functional profiles in fMRI literature4,6,8–11,47,50. Specifically, we
found that TPJ produced earlier activations (Fig. 3e, f) that were
notably coactive for mentalizing and arithmetic (cognitive task;
Fig. 3c, d). Indeed, the onsets of TPJ activations were the earliest
of any DMN ROI. In contrast, dmPFC produced significantly
later activations (Fig. 3e, f) that were overwhelmingly
mentalizing-specific (Fig. 3c, d), indicating that dmPFC sits at a
higher level of mentalizing’s neurocognitive sequence than TPJ.
Moreover, aggregate ROI analyses revealed no significant self/
other differences in TPJ (Table 1), while dmPFC featured robust
self/other timing differences (Fig. 5c, d), suggesting that dmPFC is
more sensitive to variation in mentalistic content. In terms of
behavior, although TPJ and dmPFC best predicted RTBehav,
dmPFC was the only ROI that predicted ChoiceBehav (choosing
‘true’ or ‘false’ for task prompts; Table 1), implying that dmPFC
instantiates more aspects of mentalistic behavior than TPJ.
Strikingly, unlike TPJ, dmPFC activation offsets closely preceded
behavioral responses (within 124 ± 7 ms; Fig. 4c), suggesting that
dmPFC is more deeply involved in the final stages of mentalistic
reasoning. Taken together, while TPJ and dmPFC are both clearly
crucial for mentalizing performance, dmPFC appears more spe-
cialized for mentalizing itself.

Given the marked functional differentiation between TPJ and
dmPFC, what specific neurocognitive roles might they play in
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mentalizing? In social neuroscience, TPJ is often considered a
functionally-specific locus for explicit belief reasoning45,46,51,52.
Yet here, TPJ was less functionally specialized relative to dmPFC
(Figs. 3c–f, 4 and 5c, d). To explain this discrepancy, we suggest
that TPJ provides crucial antecedents for explicit belief reasoning
in dmPFC. Given TPJ’s central role in automatic evaluations of
thematic semantics53–61, we propose that TPJ automatically
represents integrative psycho-semantic models of exemplar con-
texts for a given inference. In simpler terms, TPJ may help us ‘see’
the psycho-semantic gestalt of a given situation62. Accordingly,
tasks that ‘show’ concrete mentalistic content (e.g., social ani-
mations) often recruit TPJ but not dmPFC, while tasks that
require mentalistic logical inferences (e.g., false belief) often
recruit dmPFC in addition to TPJ10–12. Thus, when mentalistic
content feels ‘seeable’ from perceptual processing, TPJ could
generate mentalistic inferences without explicit belief reasoning.
Indeed, work on implicit and spontaneous mentalizing show that
TPJ can encode an actor’s beliefs without any explicit
reasoning16,63–71. Taken together, TPJ may implicitly set the
psycho-semantic stage for explicit belief reasoning that occurs
later in dmPFC when necessary (e.g., our trait judgment task;
Fig. 1a).

The dmPFC may be well-suited for explicit belief
reasoning72–75. We found substantial concurrent activation
between dmPFC and all other ROIs (Figs. 2, 3e and 6), suggesting
that dmPFC could work iteratively with lower-level regions to
refine what is ‘seen’, thus providing dmPFC with increasingly-
useful inputs from which to draw better inferences76,77. More-
over, studies on strategic reasoning show that dmPFC can arbi-
trate between multiple mental models78 and prospective choices79

by simultaneously evaluating multiple possibilities80 through
‘fuzzy’ propositional reasoning77,81. As such, dmPFC may arbi-
trate between multiple exemplar contexts to help extract the most
relevant and enduring semantic features for a given psychological
inference. Taken together, dmPFC may integrate and refine
representations throughout mentalizing’s neurocognitive pathway
to strategically reason about minds.

As for mentalizing about the self or others, fMRI studies
routinely suggest that dmPFC is ‘other-selective'32–35. What
underlying neuronal population dynamics could result in stron-
ger hemodynamic responses for one mentalizing type over
another? The standard assumption would be that the magnitude
(i.e., intensity) of neuronal activations differs across mentalizing
type. This might be seen in aggregate ROI activity, or perhaps
across individual ROI sites. We tested both possibilities by
examining self/other differences in activation magnitude (HFB
peak power). Unexpectedly, aggregate ROI analysis revealed that
dmPFC produced nonsignificant self/other differences in peak
power (Fig. 5e and Table 1). Similarly, single-site analysis showed
that most dmPFC sites had nonsignificant self/other differences
in peak power (86%), while the remaining ‘self-greater’ and
‘other-greater’ sites did not significantly outnumber each other
(Fig. 5a, b). Strikingly, dmPFC did not contain sites that only
activated for one mentalizing type. In sum, both mentalizing
types recruited identical dmPFC sites (100% overlap) at equiva-
lent intensities, which appears inconsistent with numerous fMRI
reports of ‘other-selective’ dmPFC responses.

We instead found robust self/other differences in the timing of
dmPFC activations. Specifically, other-mentalizing evoked slower
and lengthier activations compared to self-mentalizing (Fig. 5c, d).
In other words, dmPFC activity remained significantly above
baseline for longer during other-mentalizing (see Figs. 2e and 6a).
This suggests a different account of why dmPFC produces
stronger hemodynamic responses for mentalizing about others
over oneself. The typical story is that dmPFC is highly specialized
for thinking about other people’s minds32–35. Alternatively,

dmPFC could be sensitive to the inherently greater difficulty of
other-mentalizing, which may necessitate additional processing
cycles before completion. This additional processing may involve
‘anchoring-and-adjustment’; the use of self-representations as an
anchor from which to adjust other-mentalizing inferences – a
function strongly linked with dmPFC and its role in strategic
reasoning75,82,83. Self-mentalizing may be simplified by the rich
compendium of accessible information we have about ourselves,
thus resulting in brief but equally intense processing. Given that
standard fMRI analysis does not distinguish activation intensity
from activation duration, it appears that the latter has been mis-
taken for the former – though we cannot exclude the possibility of
confounds related to differences between ECoG and fMRI26.

Our peculiar vmPFC results may shed light on schematic
contributions to mentalizing. Although there is growing con-
sensus that vmPFC is important for schema processing32,84–88,
our results appear contrary to this at first blush. We found that
vmPFC produced the latest activations across ROIs (Fig. 3e, f),
which contradicts numerous reports of early (<200 ms) schema-
based ‘gist’ predictions in vmPFC89–95. Early vmPFC activation
has even been observed during mentalizing17. Of note, many
studies have observed ‘double waves’ of early and late vmPFC
activity: early activity may reflect vision-based gist construal,
while late activity may reflect elaborative situational
construal93,96–100. There is some evidence of a ‘double wave’ in
the present study, as three posterior vmPFC sites produced very
early activations (<200 ms; Figs. 2k and 4a) that met outlier
exclusion criteria for ROI analyses. These early vmPFC sites
produced equivalent activations for all task conditions (Figs. 2k,
3c and 5a), aligning with characterizations of rapid magnocellular
gist processing, which likely cannot discern our alphanumeric
stimuli91,101. In contrast, late-onset vmPFC sites produced longer
activations for other- versus self-mentalizing (Figs. 2f and 5c, d),
perhaps reflecting other-mentalizing’s greater reliance on sche-
matic feedback, especially in our trait judgment task84,102–104.
Nevertheless, self- and other-mentalizing recruited near-identical
vmPFC sites (91% overlap; Fig. 5a, b), suggesting common
schematic underpinnings32,84,105. Taken together, we propose
that vmPFC provides schematic contributions to mentalizing in
two ways: rapid predictive processing from coarse visual afferents,
followed by slow situational processing involving schematic
feedback and integration across DMN.

At the systems level, we found complex and hierarchical pro-
cessing dynamics across mentalizing’s putative neurocognitive
pathway. We observed consistent trial-by-trial propagation of
activation onsets across ROIs (Supplementary Fig. 3), portraying
an initial ‘feedforward sweep’ of coarser processing28,106,107 along
the pathway. Indeed, onset latencies were insensitive to self/other
differences (Table 1). Onsets were followed by considerable
concurrent activations across all ROIs (Figs. 2, 3e, 5c, 6 and S2),
suggesting that distinct pathway regions largely work together
(i.e., recurrent processing28,108,109) within an overarching pro-
cessing sequence. Recurrent processing may be crucial for self/
other differentiation, as self/other differences in aggregate ROI
activity did not reach significance until concurrent activation was
achieved across all ROIs (e.g., activation peaks and offsets; Fig. 5).
Taken together, mentalizing may be supported by a brief initial
‘feedforward sweep’ of coarser processing along the pathway,
followed by substantial recurrent processing that may integrate
and refine representations across pathway regions. These
dynamics could obscure cross-regional functional distinctions in
fMRI studies. However, further research involving connectivity
analyses are needed for more conclusive claims.

Temporoparietal DMN regions (tpDMN; TPJ, ATL, and PMC)
may help integrate representations throughout mentalizing’s
neurocognitive pathway. Classification analysis revealed two
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distinct functional types (Fig. 4b) that were anatomically inter-
digitated in tpDMN ROIs: sites with earlier non-specific activa-
tions, and sites with later mentalizing-specific activations
(Fig. 3c). Intriguingly, non-specific tpDMN sites often coactivated
with lower-level regions like visual cortex (e.g., Fig. 2b–d), sug-
gesting attunement to lower-level afferents. Meanwhile,
mentalizing-specific tpDMN sites often coactivated with higher-
level regions like mPFC (e.g., Fig. 2e, f, h, i), suggesting attune-
ment to higher-level feedback. Critically, we also found lengthy
concurrent activations across site types and ROIs (Figs. 2 and 6),
which could recurrently integrate low- and high-level
representations73,76,77,110. Indeed, we found that visual and
mentalistic representations were simultaneously encoded in all
tpDMN ROIs (Supplementary Table 1). Taken together, we
propose that interactions between distinct interdigitated neuronal
populations in tpDMN111–113 may help integrate and refine
distant representations across mentalizing’s neurocognitive
pathway.

This study is not without confounds and limitations. Some of
these limitations are inherent to ECoG: the use of participants
with epilepsy, inconsistent brain coverage across participants, and
sampling bias for cortical gyri26. Although these limitations were
mitigated to the best of our ability (see Methods), they cannot be
completely ameliorated. Thus, our ECoG findings could be cor-
roborated by examining healthy participants with recent advances
in source-space EEG/MEG, such as ultra-high density EEG114,
optically-pumped MEG115, and laminar source localization116.
Another important confound was the sparse right-hemisphere
coverage of our cohort, which may limit the interpretability of our
ATL and TPJ results117. Nonetheless, our few right-hemisphere
sites appear functionally analogous to their left-hemisphere
homologs (Supplementary Figs. 6–9). A task-related limitation
was the short pre-stimulus baseline (Fig. 1a), which sometimes
contained residual activity from prior trials, likely resulting in
artifactual ‘deactivations’ in somatomotor sites (Fig. 6a). Another
task-related confound was greater prompt length for other-
mentalizing (e.g., “My neighbor is…”) versus self-mentalizing
(e.g., “I am…”; Supplementary Table 4), which we controlled for
using computer vision36,37 (see Supplementary Methods). Relat-
edly, mentalizing-specificity (Fig. 3c, d) could arise from differ-
ences between sentences and arithmetic equations. However,
mentalizing-specific sites were not concentrated in reading-
related regions118–121, but rather in the ‘mentalizing network’
reported by countless fMRI studies12.

Distributed hierarchical processing is a central organizing
principle of neurocognitive systems28,31,42,109. Characterizing
such hierarchies has enabled incisive neuromechanistic accounts
of many psychological functions30,122. Here we provide a com-
prehensive electrophysiological exploration of the human social
brain, revealing that mentalizing is characterized by complex and
hierarchical neurocognitive dynamics at millisecond, millimeter,
and cross-regional scales. While many questions remain, our
findings contribute to a solid foundation upon which more
conclusive neurocognitive accounts of mentalizing can be built.

Methods
All research activities herein were conducted in accordance with protocol approved
by the Stanford Institutional Review Board for human experimentation. All
computational procedures and analyses herein were implemented in MATLAB123

unless otherwise specified.

Participants. We employed a cohort of sixteen human participants while they
underwent neurosurgical treatment for drug-resistant epilepsy (demographics in
Supplementary Table 2). Each participant provided written informed consent in
accordance with the Stanford Institutional Review Board. Participants were not
compensated as per Stanford Institutional Review Board guidelines for inpatient
clinical research.

As part of their presurgical evaluation, participants were implanted with ECoG
at Stanford University Medical Center. The anatomical placement of electrode sites
was determined according to each participant’s clinical needs. Participants were
included in this study’s cohort if they had electrode coverage in key DMN regions:
mPFC, PMC, TPJ, and ATL. Each participant was monitored in hospital for six to
ten days prior to surgery, during which the study was conducted.

Behavioral task. ECoG data was recorded while participants performed an event-
related behavioral task with six conditions (trial types; Fig. 1a and Supplementary
Table 4). Five of these conditions required true/false responses to written prompts,
while one condition consisted of cued rest. Two conditions featured mentalizing
prompts, either about oneself (e.g., “I am honest”) or others (e.g., “My neighbor is
honest”). Participants were instructed to select a single neighbor (current or past)
as the target for other-mentalizing. Cognitive task trials consisted of basic arith-
metic (e.g., “9+ 86= 95”). Two conditions featured memory-related prompts:
episodic (e.g., “I ate candy yesterday”) and self-semantic (e.g., “I eat a lot of
candy”). The cued rest condition required no response and displayed a fixation
crosshair for 5-10 seconds. The memory and rest conditions were not relevant to
the current analyses have been reported elsewhere112,113,124. Stimuli were presented
in random order and were self-paced, advancing to the next trial after the parti-
cipants’ response, or up to 15 seconds if no response. The inter-trial interval (ITI)
occurred -200-0 ms before each trial. The experiment was broken into two separate
runs (mean run duration=12.50 ± 1.64 min). Participants were allowed a short
break between behavioral runs. On average, each run featured 25 trials of each
sentence condition, 40 cognitive trials, and 36 rest trials. Each non-rest trial con-
tained unique prompts; prompts were not repeated within participant. Responses
were made via a handheld keypad using either the ‘1’ (true) or ‘2’ (false) key.
Participants were instructed to perform the task as accurately and as quickly as
possible. All stimuli were presented in white font on a black background (1200 ×
800 pixels) using Psychophysics Toolbox 3125.

For all analyses, trials were excluded if meeting any of the following criteria:
high-frequency epileptic oscillations, no behavioral responses, irrelevant button
presses, or RTBehav under 400 ms.

Electrocorticography data acquisition. ECoG recordings were obtained via
2125 subdural electrodes (Fig. 1b). Electrodes (platinum plates with diameter of
1.2–2.3 mm) were implanted subdurally onto the cortical surface in grids or strips
with center-to-center interelectrode spacing of 4-10 mm (Adtech Medical Instru-
ments). Electrodes were connected to a multichannel recording system (Nihon
Kohden; Tucker Davis Technologies) with sampling rate of 1000 Hz or above.
Anatomical data was acquired using a GE 3-Tesla SIGNA Magnetic Resonance
Imaging (MRI) scanner at Stanford University. A T1-weighted anterior-posterior
commissure-aligned pulse sequence was used. T1 data was resampled to 1 mm
isotropic voxels, then segmented to distinguish gray and white matter using
FreeSurfer126. To facilitate electrode localization, postimplant computerized
tomography (CT) scans were coregistered to the preoperative MRI anatomical
brain volume127. For each participant, electrodes sites were localized in BioImage
Suite128 and displayed on the participants’ own reconstructed 3D cortical surface
using the iELVis toolbox129. Electrode positions were corrected for post-
implantation brain shift, allowing for the accurate anatomical localization of
electrodes sites130.

Defining regions of interest (ROIs) and brain networks. Each participant’s
native-space cortical surface reconstruction (e.g., Supplementary Fig. 2) was used to
classify electrode sites into a priori ROIs that are strongly implicated in menta-
lizing, with visual cortex included as a control ROI (Fig. 1c). Standardized brain-
based parcellation was avoided due to known transformation inconsistencies in
ECoG129. ROIs were defined through FreeSurfer cortical parcellation combined
with visual inspection of anatomical landmarks. The ROI for ‘visual cortex’ con-
sisted of occipital cortex, lingual gyrus, posterior fusiform gyrus, and posterior
inferotemporal cortex. The ‘ATL’ ROI consisted of a bilateral anterior subregion of
temporal cortex with precentral sulcus as the posterior bound, comprising the
temporal poles and adjacent sections of entorhinal cortex and superior, middle, and
inferior temporal sulci/gyri. The ‘TPJ’ ROI was a bilateral posterior subregion of
inferior parietal lobule with lateral sulcus as the anterior bound, comprising
angular gyrus and adjacent sections of supramarginal gyrus and superior temporal
sulcus/gyrus. The ‘PMC’ ROI consisted of precuneus, posterior cingulate, and
retrosplenial cortex. The ‘amPFC’ ROI was an mPFC subregion bounded between
the ventral and dorsal reaches of corpus callosum. The ‘dmPFC’ ROI was a mPFC
subregion ventrally bounded by the amPFC ROI and posteriorly bounded by the
callosal rostrum. The ‘vmPFC’ ROI was an mPFC subregion dorsally bounded by
the amPFC ROI and posteriorly bounded by the callosal rostrum, including the
medial orbitofrontal surface.

ECoG preprocessing. Preprocessing was performed on a single-site/single-parti-
cipant basis using custom routines (see Code Availability). First, data were notch
filtered for power-line noise (57–63 Hz) and harmonics (117–123 Hz, 177–183 Hz).
Electrode sites were discarded from further analyses if they were marked as
pathological or ‘noisy’ by postclinical evaluation. The data was then rereferenced by
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subtracting the mean signal of the remaining electrodes from each electrode’s
signal. The rereferenced data underwent time-frequency decomposition into
4–200 Hz spectra in 1–10 Hz bands using 5-cycle Morlet wavelet transforms. The
power of the signal in each frequency band was z-transformed across time; this
helps correct the 1/frequency decay of neurophysiological signals and improves
interpretability. Data was then epoched into trials that were time-locked to sti-
mulus presentation, ranging from 200 ms pre-stimulus to 5000 ms post-stimulus.
For each trial and frequency band, baseline correction was performed by sub-
tracting the mean power across the pre-stimulus baseline period (−200–0 ms) from
all timepoints within a trial. To reconstruct the high-frequency broadband (HFB)
signal, the primary signal of interest, z-transformed power of frequency bands
within 70–180 Hz were averaged to produce a single HFB timecourse per electrode.
Lastly, HFB timecourses from each electrode were low-pass filtered with a gaussian
window (width= 50 ms) for further analysis. Trials were rejected from further
analyses if epileptic high-frequency oscillations were observed. Within epochs,
timepoints were discarded after presentation of the next trial’s stimulus (i.e.,
timepoints after RTBehav+ 200 ms ITI).

Statistics. Statistical analyses described below were implemented in MATLAB
Statistics and Machine Learning Toolbox123. Data was visualized using the
GRAMM toolbox131. All statistical tests were two-tailed. All multiple comparisons
corrections maintained the False Discovery Rate (FDR) under 0.05 through the
Benjamini-Yekutieli procedure for data with any dependence structure132, with p-
values adjusted accordingly (pFDR).

We primarily used mixed models due to their design flexibility and robustness
to sampling heterogeneity, multicollinearity, and statistical confounds133.
Specifically, we employed linear mixed-effects modeling (LMEM) for continuous
outcomes and logistic mixed-effects classification (LMEC) for binary outcomes. To
minimize estimation bias, mixed models used restricted maximum likelihood-
based estimators133. To account for full data dependence structure with reduced
bias and assumptions, mixed models used unconstrained variance-covariance
matrices with log-Cholesky parametrization134. To account for heterogenous
variances across mixed model terms, Satterthwaite approximation for degrees of
freedom (effective DF) was used135. To rectify violations of assumptions and
overparameterization in mixed models, we evaluated objective function Hessian
matrices and ensured positive definiteness136. Additionally, non-mixed models
were used when specified below.

Within-site analyses. Within-site analyses (Fig. 1d–f) were performed to provide
the bases for the primary multi-site analyses. The dependent variable for within-
site analyses was z-scored HFB power across timepoints and trials (Fig. 1d). Trials
were excluded if containing high-frequency epileptic oscillations, no behavioral
responses, irrelevant button presses, or RTBehav under 400 ms. Timepoint-by-
timepoint observations met outlier exclusion criteria if HFB power exceeded three
median absolute deviations from other observations of the same timepoint and task
condition.

Trial-averaged analysis (within-site). To identify sites with significant evoked
HFB responses for each task condition (pFDR < 0.05, corrected across timepoints
and sites), we used LMEMs (Fig. 1f). The intercept (null distribution) consisted of
timepoints within the pre-stimulus baseline (−200–0 ms). Each peri-stimulus
timepoint (0–5000 ms) was represented as a separate dummy variable. The inter-
cept was nested within trial to account for trial-specific variance. This LMEM
specification estimates mean timecourses of z-scored HFB power (β) for each task
condition. To dampen spikes and other noise, timepoints were not considered
significant unless pFDR < 0.05 was maintained for 50 ms consecutively. For each
task condition, sites were considered ‘active’ or ‘deactive’ if evoked HFB power was
significantly higher or lower, respectively, than pre-stimulus baseline; if sites pro-
duced both, the polarity of the greatest deflection was used. Sites with non-
significant differences from baseline were considered ‘nonresponsive’.

Single-trial analysis (within-site). To identify timepoints with significant evoked
HFB activations for each trial (Fig. 1e), timepoints between stimulus onset and the
forthcoming trial (RTBehav+ 200 ms) were run through a sliding window test
(width= ±10 ms). Observations (z-scored HFB power) in each sliding window
were tested against observations from the pre-stimulus baseline via two-sample
Welch’s t-tests, which accounted for unequal variances and sample sizes. This
analysis identified timepoints within individual trials that featured significant
stimulus-evoked responses (pFDR < 0.05, corrected across timepoints, trials, and
sites) relative to the pre-stimulus baseline preceding each trial. To dampen spikes
and other noise, timepoints were not considered significant unless pFDR < 0.05 was
maintained for 50 ms consecutively.

Single-trial analysis provided five key metrics of HFB activity (Fig. 1e). Onset
latency is the earliest timepoint with significant activation (green squares). Peak
latency and peak power are the timepoint and magnitude, respectively, of the
strongest activation (white squares). Offset latency is the latest timepoint with
significant activation (red squares). Duration is the total number of timepoints with
significant activations (brown areas).

Multi-site analyses. Multi-site analyses used results from within-site analyses as
response measures. Outliers were identified with respect to the two-dimensional
distance between stimulus onset and RTBehav using bisquare robust regression106.
For each site and single-trial HFB metric, observations were considered outliers
and discarded if residuals were greater than three median absolute deviations
(MAD). For ROI sites, this method was applied a second time using observations
from all mentalizing-active sites within each ROI. Sites were excluded from ROI
analyses if over 50% of its observations exceeded three MAD. Of all ROI sites, only
three sites in vmPFC were excluded.

Functional specificity and selectivity (multi-site). Functional specificity
(Fig. 3c, d) of each site was determined by comparing mentalizing (collapsed
across self/other) and arithmetic (cognitive task) results from trial-averaged
analysis, along with direct comparisons of single-trial peak power (including
trials with nonsignificant activations) for mentalizing versus arithmetic using
bisquare robust regression. Specifically, sites were considered ‘mentalizing-spe-
cific’ if they produced (1) significant trial-averaged activations for mentalizing but
not arithmetic (pFDR < 0.05, corrected across sites and timepoints), and (2) pro-
duced greater peak power for mentalizing over arithmetic (pFDR < 0.05, corrected
across sites). Sites with significant trial-averaged coactivations for mentalizing
and arithmetic were considered ‘non-specific’, regardless of peak power differ-
ences. All mentalizing-active sites with nonsignificant mentalizing/arithmetic
peak power differences were labeled as ‘non-specific’ (Mentalizing active =
Cognitive active).

Self/other selectivity (Fig. 5a, b) of each site was determined by trial-averaged
results and direct comparisons of single-trial peak power (including trials with
nonsignificant activations) for self- versus other-mentalizing using bisquare robust
regression. Sites were considered ‘self-only’ or ‘other-only’ (not considering
cognitive task) if they only produced (1) significant trial-averaged activations for
only one mentalizing type (pFDR < 0.05, corrected across sites and timepoints) and
(2) produced greater peak power for that mentalizing type over the other
(pFDR < 0.05, corrected across sites). Sites that activated for both mentalizing types
were labeled by self/other differences in peak power: ‘self-greater’ (Self > Other),
‘other-greater’ (Other > Self), and ‘non-selective’ (Self=Other). Sites that activated
for only one mentalizing type but had nonsignificant self/other differences in peak
power were considered ‘non-selective’ (Self=Other). In sum, self-only and self-
greater sites were considered ‘self-selective’, while other-only and other-greater
sites were considered ‘other-selective’.

Aggregate ROI analyses (multi-site). To reveal the spatiotemporal dynamics of
mentalizing processing, we analyzed single-trial HFB metrics from mentalizing-
active ROI sites. Each ROI and HFB metric was analyzed using separate LMEMs.
All LMEMs were nested within Participant, which accounted for within- and
between-participant heterogeneity through unconstrained variance/covariance
matrices across within-participant random effects. LMEMs that included Site or
Trial as nesting factor likewise accounted for site- and trial-related heterogeneity,
respectively. Stimulus visual dissimilarity was controlled for by including two visual
dimensions (VDs) as random effects specified below; VDs were derived from a
popular computer vision model based on the ventral visual stream36,37 (see Sup-
plementary Methods). In addition to outlier exclusion criteria in the multi-site
analyses section above, trials with RTBehav over 5000 ms were excluded given our
5000 ms epoch lengths.

LMEMs for self/other differences (Fig. 5c–e and Table 1) represented
mentalizing type as a fixed and random effect. We also included random effects for
RTBehav and VDs, which controlled for RTBehav and stimulus visual dissimilarity.
All random effects were nested within Site and Participant to account for site- and
participant-related heterogeneity.

LMEMs for neurobehavioral associations (Fig. 4d, e and Table 1)
simultaneously estimated RTBehav and ChoiceBehav (controlling for one another) as
fixed and random effects, while VDs were specified as random effects. All random
effects were nested within Site and Participant to account for site- and participant-
related heterogeneity.

Pairwise ROI comparisons (Fig. 3f) were performed using LMEMs with ROI as
a fixed and random effect nested within Trial within Participant, which estimated
within-trial ROI differences and accounted for trial- and participant-related
heterogeneity. Additionally, a random effect for RTBehav was nested within Trial
within Participant to control for RTBehav. Critically, each pairwise comparison was
restricted to participants with mentalizing-active sites in both ROIs.

Whole-brain HFB responses within time-windows (multi-site). To provide a
broad overview of the neuronal spatiotemporal dynamics evoked by each task
condition, we performed whole-brain analysis of HFB responses within specific
time-windows (Fig. 6a). For each site and task condition, separate LMEMs were
used to analyze trial-by-trial HFB power (z-scored). The intercept (null distribu-
tion) consisted of observations within the pre-stimulus baseline (−200–0 ms).
Dummy variables consisted of observations within each time window. All model
terms were specified as fixed and random effects nested within Trial, which
accounted for trial-related heterogeneity. This specification estimates HFB
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responses evoked by each task condition within time windows (pFDR < 0.05, cor-
rected across sites and time windows).

Grand-average ROI timecourses (multi-site). To summarize task-evoked neu-
ronal dynamics within ROIs, we performed grand-averaged analysis (Fig. 6b–h) of
trial-by-trial HFB timecourses (z-scored) from ROI sites that were identified as
active or deactive for a given task condition by trial-averaged analysis (see Figs. 1f
and 2). Separate LMEMs were used for each ROI and task condition. The intercept
(null distribution) consisted of timepoints within the pre-stimulus baseline
(−200–0 ms). Peri-stimulus timepoints (0–3000 ms) were represented as dummy
variables. Model terms were nested within Site and Participant to account for site-
and participant-related heterogeneity. This specification estimates grand-average
HFB timecourses evoked by each task condition within ROIs (pFDR < 0.05, cor-
rected across ROIs and timepoints).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Anonymized preprocessed ECoG data can be shared upon reasonable request to Kevin
M. Tan (kevmtan@ucla.edu), subject to a data-sharing agreement between the
requestor(s), study authors, and Stanford University. The data-sharing agreement will be
tailored to the aims of the requestor(s). Source data are provided with this paper.

Code availability
Custom code is available here: https://github.com/pinheirochagas/lbcn_preproc.
Additional information, annotation, and organization of code used here can be provided
upon request to Kevin M. Tan (kevmtan@ucla.edu).
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