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Mechanistic understandings of forms of incidental emotion regulation have implications for basic and trans-
lational research in the affective sciences. In this study we applied Dynamic Causal Modeling (DCM) for fMRI
to a common paradigm of labeling facial affect to elucidate prefrontal to subcortical influences. Four brain
regions were used to model affect labeling, including right ventrolateral prefrontal cortex (vlPFC), amygdala
and Broca's area. 64 models were compared, for each of 45 healthy subjects. Family level inference split the
model space to a likely driving input and Bayesian Model Selection within the winning family of 32 models
revealed a strong pattern of endogenous network connectivity. Modulatory effects of labeling were most
prominently observed following Bayesian Model Averaging, with the dampening influence on amygdala orig-
inating from Broca's area but much more strongly from right vlPFC. These results solidify and extend previous
correlation and regression-based estimations of negative corticolimbic coupling.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The unique human ability to consciously control one's emotional ex-
perience also counts among the more difficult to execute. Nonetheless
the psychology and neuroscience of explicit emotion regulation have
been fruitfully studied for over two decades, yieldingmuchunderstand-
ing of the neural mechanisms of emotions and behavioral control
(Gross, 2007). Neurobiologically, we are now aware of major prefrontal
and emotional regions involved (Ochsner and Gross, 2005; Ochsner et
al., 2012) and are beginning to understand the important connections
between emotion regulation and health (DeSteno et al., 2013). Howev-
er, research has more recently suggested that there is a disconnect be-
tween self-reported use of explicit emotion regulation strategies and
their spontaneous use in daily life (Gruber et al., 2012; Volokhov and
Demaree, 2010). One reason for this may be due to the substantial cog-
nitive resources and time required to enact such strategies (Mauss et al.,
2006). As a result, research on emotion regulation at a non-conscious
level has emerged as an equally interesting and alternative avenue of
investigation into how we commonly control our emotional experi-
ences (Berkman and Lieberman, 2009; Koole and Rothermund, 2011).

By explicit emotion regulation we refer to strategies such as
reappraisal of an emotional stimuli or suppression of an emotional
response, while in contrast non-conscious emotion regulation (also
called implicit or incidental emotion regulation) refers to those cogni-
tive processes that result in the lessoning of emotional reactivity and

where this effect was not consciously intended by the person engag-
ing in it (Lieberman et al., 2011). Although incidental emotion regula-
tion at a non-conscious level cannot easily be self-reported, functional
magnetic resonance imaging (fMRI) offers a window into the process.
This technology can reveal the presence of incidental emotion regula-
tion via lessoned emotional reactivity and the extent to which pre-
frontal regions are recruited that overlap those used to explicitly
control emotion (Burklund et al., under review; Payer et al., 2012).

There are a variety of psychological paradigms currently being
used to probe non-conscious forms of emotion regulation using
fMRI (Berkman et al., 2009; Egner et al., 2008; Meyer et al., 2011).
One frequently studied cognitive process is affect labeling (Hariri et
al., 2000; Lieberman et al., 2007) which is gaining increasing evidence
as a form of incidental emotion regulation (Kircanski et al., 2012;
Lieberman et al., 2011). This paradigm lies at the confluence of emo-
tion, control, and language systems. Labeling emotional faces results
in decreased amygdala response and the increased recruitment of
prefrontal control and language regions, particularly the ventrolateral
prefrontal cortex (vlPFC) in the right hemisphere and Broca's area
(BA 44/45) in the left. To this end, a task-induced negative coupling
between the activity in the amygdala and vlPFC has been shown
using regression-based techniques (Foland-Ross et al., 2008; Hariri
et al., 2000) and has been interpreted as a dampening of amygdala re-
activity by the vlPFC. However, causal inferences using such methods
remain circumspect. To advance beyond the simple identification of
activation patterns or the changes in coupling between only two re-
gions one must use more sophisticated analyses (Friston, 2011).

In this study, we examined the nature of the vlPFC–amygdala cou-
pling (specifically, the directed influences between these regions)
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during affect labeling, and additionally assessed the understudied con-
tribution of Broca's area to amygdala activity. To do soweusedDynamic
Causal Modeling (DCM), a validated and reliable Bayesian statistical
framework for effective connectivity analysis which encourages the
comparison of multiple user-defined models of causal interactions
between a set of brain regions (Friston et al., 2003; Rowe et al., 2010;
Schuyler et al., 2010). Ours is, to the best of our knowledge, the first
application of this method to this common paradigm.

2. Materials and methods

2.1. Subjects

Fifty-two healthy subjects were recruited as part of a larger study
of emotion regulation in bipolar disorder by advertisement in local
newspapers and campus flyers. They provided informed consent in
accordance with the Institutional Review Boards at the University of
California, Los Angeles (UCLA). All participants completed the Struc-
tured Clinical Interview for DSM-IV Structured Clinical Interview for
DSM-IV Axis I Disorders (SCIDI/P; First, 2002). Exclusion criteria includ-
ed any concurrent or past psychiatric diagnosis (including history of
substance abuse), neurological illness, left-handedness, metal implants,
a history of skull fracture or head trauma with loss of consciousness of
more than 5 min, or taking any medications with psychotropic effects.

2.2. Experimental design

The affect labeling paradigm consisted of three experimental con-
ditions: ‘match facial affect,’ ‘label facial affect,’ and ‘match forms’
(Fig. 1) (Hariri et al., 2000). They were presented as nine experimen-
tal 30-second blocks: four displayed emotional faces and were inter-
leaved with five control blocks displaying geometric forms. Of the
four displaying faces, two required the subject to match a facial ex-
pression with one of two other facial expressions (match faces condi-
tion). Faces were shown with neutral or negative affect such as fear,
surprise or anger. The other two blocks required subjects to choose
one of two presented words (e.g., ‘ANGRY’, ‘AFRAID’) that best
matched an emotional face (label faces). For each affect condition,
12 different faces were used, taken from a standard set of photo-
graphic stimuli (Ekman and Friesen, 1976). Each emotion was ran-
domized across blocks and the order of task presentation was
counterbalanced among subjects. Subjects responded with one of
two buttons with their right hand and were told to answer “…as
quickly as possible without making too many mistakes”. Response
times were collected and accuracy was calculated for each condition.

2.3. Image acquisition

All subjects were scanned on a 3 T Siemens Trio scanner. A high res-
olution structural T1 MPRAGE was acquired with parameters of TR =
1.9 s, TE = 2.26 ms, Flip-Angle = 9°, Matrix = 256 × 256, FOV =

250 mm, voxel size 1 mm isotropic, and total sequence time 6 min and
50 s. The fMRI scan was acquired using a T2*-weighted EPI gradient-
echo pulse sequence with IPAT, with TR = 2.5 s, TE = 25 ms, Flip-
Angle = 78°, Matrix = 64 × 64, FOV = 192 mm, in-plane voxel size
3 × 3 mm, slice thickness 3 mm, 0.75 mmgap, and 30 total interleaved
slices. To allow for scanner equilibration, 2 TRs at the beginning of the
scan were discarded. The total sequence time was 5 min and 45 s,
with 135 volumes acquired. For co-registration we additionally ac-
quired a matched-bandwidth structural scan with parameters TR =
5 s, TE = 34 ms, Flip-Angle = 90°, Matrix = 128 × 128, FOV =
192 mm, in-plane voxel size 1.5 × 1.5 mm, slice thickness 3 mm, and
a total sequence time of 1.5 min. We were not able to acquire
MPRAGE scans for four subjects, so their lower resolution matched-
bandwidth images were used instead for registration. Foam padding
was placed around the heads of participants to suppress motion, re-
sponses were recorded by button box, and stimuli was presented by
LCD goggles.

2.4. Image preprocessing

All preprocessing and analyses were performed within SPM8/
DCM10 (www.fil.ion.ucl.ac.uk/spm/). Subjects' functional volumes
were slice-timing corrected (Descamps et al., 2007; Kiebel et al., 2007),
then motion realigned, coregistered to the MPRAGE, normalized to a
T1-weighted standard brain in MNI space, resliced 3 mm isotropically,
and smoothed with a 6 mm FWHM Gaussian kernel. All subjects had
maximum translational head movement of less than 2.5 mm, with
means and standard deviations across subjects for three translation
(x, y, z; in mm) parameters: 0.16(0.2), 0.10(0.11), and 0.29(0.31) and
three rotation (pitch, roll, yaw; in radians) parameters: 0.005(0.005),
0.003(0.004), and 0.003(0.005).

2.5. First level (within-subject) analysis

First-level general linear modeling (GLM) of the preprocessed
functional images included convolving task design blocks with a ca-
nonical hemodynamic response function, high-pass filtering at 128 s
to remove low frequency drifts, adding six motion realignment pa-
rameters as covariates of no interest and specifying an F-statistical
contrast for subsequent VOI extraction (i.e. when adjusting for effects
of interest). The first level statistical maps were run twice; the second
time with an explicit whole-brain mask derived from an optimal
thresholding of the initial masks to ensure coverage of vlPFC
(Ridgway et al., 2009).

2.6. Second level group GLM analysis

The standard mass univariate summary statistics approach was
used to bring single-subject contrast images into a group random ef-
fects analysis. The contrast label emotion vs match forms was of inter-
est to elucidate the incidental emotion regulation network while the

Fig. 1. Affect Labeling paradigm. (A) Match emotion condition; (B) label emotion; (C) match geometric forms.
Hariri et al. (2000).
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contrast label emotion vs match emotion more specifically revealed
those regions involved in labeling (thresholds: p b 0.0005, cluster
size 10 voxels; p b 0.05 AlphaSim-corrected (http://www.restfmri.
net/)). Furthermore, the contrast match emotion vs match forms
robustly activates the amygdala and was used to guide functionally
defined node extraction (see below).

2.7. Region of interest analyses

To demonstrate and confirm with our data the expected labeling-
induced increase of right vlPFC activity with the decrease of right
amygdala activity we performed region of interest (ROI) analyses on
both these regions with independently defined anatomical masks.
We brought a histologically-defined probabilistic right amygdala
(Amunts et al., 2005) and a Tailarach Daemon right vlPFC (BA 47)
mask into the MarsBaR toolbox (Brett et al., n.d.) across the 45 sub-
jects that survived a time series extraction procedure (see below).
For the amygdala the contrast match emotion vs label emotion was
used to verify that its activity is significantly greater during matching
emotional faces than during labeling emotional faces, while the re-
verse contrast was used to verify greater activity of vlPFC.

2.8. Dynamic causal modeling and model space construction

To perform a dynamic causal modeling analysis of a network one
first selects nodes for which one has a priori knowledge and hypoth-
eses, but bases the selection on GLMmaps of significant task-induced
activation. We chose four regions that were shown to be activated in
the group match emotion vs match forms or label emotion vs match
forms contrasts which we hypothesized either launched the cognitive
process (through visual input) or potentially caused the dampening
of amygdala activity previously noted (Foland-Ross et al., 2008;
Lieberman et al., 2005, 2007). These regions were the right inferior
occipital gyrus (IOG), the right amygdala (both coordinates chosen
at the individual subject level with the match emotion vs match
forms contrast), the right ventral lateral prefrontal cortex (vlPFC; BA
47) and Broca's area (aka left posterior inferior IFG; pars triangularis;
BA 44/45) (Fig. 2 top row; both coordinates chosen at the individual
subject level with the label emotion vs match forms contrast). Two of
these regions, Broca's area and vlPFC, also appeared in the targeted
label emotion vs match emotion contrast (Fig. 2 bottom row),
supporting their specific involvement in affect labeling over and

above matching or perceiving affect. However, coordinates for the lat-
ter two nodes were not chosen at the individual subject level within
this latter contrast because of a decrease in sensitivity. After choosing
these four regions based on their response profiles to affect labeling,
DCM then allowed us to advance our research question from what oc-
curred regionally during labeling to how it occurred mechanistically.

Dynamic causal modeling is a Bayesian framework to infer effec-
tive connectivity between brain regions in a neural system of interest
(Friston et al., 2003). The investigator specifies a given model (i.e. hy-
pothesis) by assigning an endogenous architecture to the regions, the
location(s) of a stimulus input that drives the system, and specifies
which connections' couplings are modulated by a particular task
condition. The evaluation of a model results in posterior parameter
estimates on the model's uni- or bidirectional edges, as well as a
‘score’ of the model as a whole. The negative free energy approxima-
tion to the model evidence is the score used to compare multiple
models (which constitute a model space) in a Bayesian Model Selec-
tion (BMS) scheme. The negative free energy value represents a
balance between a model's goodness of fit to the data and the model's
complexity which additionally takes into account interdependencies
or covariances among parameters (Penny, 2012). Given a particular
network, a model space is generally a subset of all theoretically test-
able models built by the investigator to probe specific questions in a
computationally pragmatic manner. The inferences one makes with
DCM are therefore relative to the model space one tests. Multiple
models can further be grouped into families (Penny et al., 2010),
which contain a common element of interest and can be compared
in this manner if one asks specific questions about that common
element. Finally, one can test not only model architectures as a whole
but specific connection strengths and their ‘sign’ (positive or negative)
with Bayesian Model Averaging (BMA) (Penny et al., 2010) within a
model family.

In service of these analytical options, we systematically con-
structed a factorial model space that embodied our neuroscientific as-
sumptions and the hypotheses we wished to test. The basic model
was constructed to investigate both forward and backward informa-
tion propagation centered on the right amygdala. The presence of
some connections among regions was held constant throughout all
models while others were systematically permuted, resulting in
eight basic patterns of endogenous connectivity (Fig. 3). Based on re-
cent research on ‘multiple routes’ in the processing of written words,
emotion and emotional faces (Dima et al., 2011; Pessoa and Adolphs,

Fig. 2. (A) Label emotion vs match forms. The map (N = 52) used to determine node peak selection, (four peaks circled) before the loss of seven subjects due to node extraction.
(B) Label emotion vs match emotion, the targeted affect labeling contrast. See Supplemental Table 1 for cluster-specific information. Axial slices (R = R) at indicated Z coordinates
overlaid on standardized brain in MNI space. Both maps p b 0.0005, k = 10.
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2010; Richardson et al., 2011), we chose to keep the information
propagation from IOG to the right vlPFC constant across all models,
along with the more obvious assumption of affective stimuli also en-
tering the amygdala via IOG. The inclusion of IOG as the visual pro-
cessing node, rather than, e.g. the fusiform face area, also follows
previous theory and empirical research on the effective connectivity
of face processing (Cohen Kadosh et al., 2011; Dima et al., 2011;
Fairhall and Ishai, 2007; Haxby et al., 2000). By conflating the
matching and labeling emotional faces' conditions into a single re-
gressor we specified the driving input to our models, which as such
contained mostly face stimuli. However, one third of what a partici-
pant saw during these conditions were affective words, and so each
model was also crossed with two driving input hypotheses (families):
entering only at the right IOG or at both the right IOG and the left
Broca's area. For the latter family itwas assumed that language informa-
tion entered previously via left hemisphere regions upstream from
Broca's not explicitly included in our models. Naturally the same as-
sumption applies to our choice of IOG, a higher-order visual processing
region, however the degree of synaptic distance from sensory input is
different between these regions. Finally, to investigate the specific
changes in coupling that labeling affect engenders, our primary interest
in this study, we created four families of amygdala afferent modulation.
These were where labeling modulated either the Broca's to amygdala
connection, the right vlPFC to amygdala connection, the Broca's to
amygdala via right vlPFC pathway (i.e. these two connections simul-
taneously) or all three of these directed edges simultaneously. This
resulted in an 8(endogenous) × 2(driving) × 4(modulatory) = 64
element model space, where each model was separately estimated
for all 45 subjects.

2.8.1. Time series extraction
The peak coordinates of these four volumes of interest (VOIs) as

observed in the second level group maps were the right IOG
[42 −82 −16], right amygdala [24 −4 −13], right vlPFC [42 23 −7],
and left Broca's area [−57 20 23], located within the label emotion vs
match forms contrast (Fig. 2A). Left Broca's area and right vlPFC were
also shown in the language specific contrast label emotion vs match
emotion (Fig. 2B). Within each subject we then manually chose peak
coordinates around these group peaks within anatomical constraints
andwithin a threshold of p b 0.05 uncorrected overlaid on the subjects'

own normalized structural images (Leff et al., 2008). Because the
quality and extent of a given region's atlas representations are quite
variable (Bohland et al., 2009), we chose those anatomical reference
tools we reasonedwould optimize our selection for a particular region
in our tested network. Threshold-crossing subject-specific activations
were thusly considered within the IOG if they conformed to the
Harvard–Oxford probabilistic atlas, within the amygdala or Broca's
area (BA 44/45) if they conformed to the Jülich histological/probabilistic
atlas (Eickhoff et al., 2005) and within the vlPFC (BA 47) if they
conformed to the Tailarach Daemon (www.talairach.org) after non-
linear coordinate conversion from MNI to Talairach space (www.
bioimagesuite.org). All subject-specific coordinates were also within
15 mm Euclidean distance of the group peak (Supplemental Fig. 1).
If any region for a given subject did not pass any of these constraints
they were eliminated from the study. Seven subjects were lost in
this manner, which produced our final subject pool of 45 subjects.
All DCM and ROI results are based on this group (Table 1 for demo-
graphics). Finally, the principal eigenvariate time series was extracted
from each peak, adjusted for effects of interest, within a 5 mm radius
sphere.

2.8.2. Model comparisons and Bayesian Model Averaging
Our first DCM model comparison step was to exploit the factorial

nature of our space and compare two large model families that dif-
fered only in the anatomical locations of the driving inputs. We
chose to run a random-effects (rfx) Bayesian Model Selection because
we could not assume that the optimal model was uniformly used by
each individual in our group (Stephan et al., 2010). We looked at a
given family or model's exceedance probability, which is the probabil-
ity of a particular model beingmore likely than any othermodel in the
space. Exceedance probabilities across all models sum to 1, providing
a relative measure of fit specific to one's model space. We then
performed rfx BMS on thewinning half of themodel space and includ-
ed the BMA procedure. BMA averaged the connectivity parameters
within each subject's 32models, weighted by their posterior probabil-
ities, which yielded estimates for their strength and directions in the
form of posterior distributions (means and standard deviations) at
both the subject and group levels. Because we tested 11 parameters
of interest (8 endogenous plus 3 modulatory) we applied Bonferroni
correction (α = 0.05/11 = 0.0046) to two-tailed, one-sample tests.

Fig. 3. Eight templates of endogenous connectivity in schematic axial slice orientation. These were crossed with 2 different driving input and 4 different modulatory hypotheses,
creating a 64-element model space.
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2.9. Correlations with behavioral measures

To explore the potential connection between the strengths of
subject-specific effective connectivity parameters with behavioral
measures, we ran correlations with reaction time and percent accura-
cy with the parameter estimates from BMA. We applied Bonferroni
correction for multiple comparisons to these tests as well.

3. Results

3.1. Behavioral data

All participants performed at a high level of accuracy for both the
match emotion and label emotion conditions (Table 1).

3.2. GLM analysis

As predicted, second level group GLM maps for the contrast of in-
terest label emotion vs match forms replicated previous work by dem-
onstrating a number of known regions activated by the affect labeling
paradigm: most prominently bilateral occipital and fusiform regions,
amygdalae, vlPFC, dlPFC (BA 6), a medial region of the superior fron-
tal gyrus (BA 8), Broca's area and posterior superior temporal sulcus
(Wernicke's Area; BA 22) in the left hemisphere (Fig. 2A and Supple-
mental Table 1A). The more targeted contrast label emotion vs match
emotion revealed that a subset of these regions responded specifically
to the linguistic stimuli (Fig. 2B and Supplemental Table 1B). After
elimination of 7 subjects due to node finding for DCM all GLM second
level analyses were re-run and the results were marginally less robust
but consistent with those of the primary analysis (Supplemental Figs.
2A, 2B).

For the region of interest analyses thematch emotion vs label emotion
contrast was used to confirm that activity within the amygdala during
matching emotion was significantly greater than during labeling
emotion (t = 2.0, p = 0.026 corrected). The reverse contrast label
emotion vs match emotion was used to confirm that activity within the
vlPFC during affect labeling was significantly greater than during affect
matching (t = 2.37, p = 0.011 corrected).

3.3. DCM analysis

3.3.1. Comparing families of models
We first split our model space to determine the better of two gen-

eral hypotheses regarding the driving input to affect labeling (Penny
et al., 2010), i.e. whether the driving input was best modeled as enter-
ing the right IOG alone or in conjunction with the left Broca's area.
Random-effects Bayesian Model Selection showed that the family
with driving input entering only at the right IOG strongly won over
the family where the driving input entered additionally at the left

Broca's area (respective posterior means: 0.9493, 0.0507; exceedance
probabilities: 100%, 0%).

3.3.2. Comparing individual models (BMS) and Bayesian Model
Averaging (BMA)

The family-level result allowed us to focus on the winning family of
32 models in a comparison using rfx Bayesian Model Selection. This
would help answer further questions: (1) are any of the three permuted
connections especially important to the basicmodel structure? (2) If so,
which connections are? (3) Does affect labeling produce significant
changes in regional coupling over endogenous coupling? (4) If so,
which connections are significantly modulated?

We found model 1 to outperform the other models with an exceed-
ance probability of 22% (Fig. 4). This model had a basic endogenous
architecture without any of the three permuted connections (Fig. 3,
template ‘a’) and with modulation under affect labeling targeting the
Broca's area to amygdala connection. Model 17 was the second-best
model with an exceedance probability of 17%. In this model the same
endogenous architecture as model 1 is present, although labeling
modulates the Broca's area to amygdala via vlPFC pathway. However,
neither of these modulatory hypotheses emerged as very clear win-
ners at the BMS level, i.e. if we calculate the ratio of model posterior
means between these two models (their Bayes Factor) we return
0.0804/0.0685 = 1.1737, which constitutes weak evidence in favor
of model 1 (Penny et al., 2004). However, what emerged from this
32-model comparison was that the third and fourth strongest winning
models also possessed that basic endogenous architecture that lacked
amygdala afferents and the vlPFC to Broca's projection (Fig. 4, asterisks).
In other words, while the top four models were dissimilar in the
location of modulation under labeling, they all shared an identical en-
dogenous architecture (Fig. 3, template ‘a’), seemingly providing strong
support about the best-fit endogenous architecture of the labeling task.
To quantify this observation we next ‘post hoc’ grouped our model
space into eight families of those endogenous architectures. Of these,
the family with the firstmodel's architecture strongly won the Bayesian
model comparison with a family posterior mean of 0.479 and exceed-
ance probability of 88% (Supplemental Fig. 3). As a parallel, exploratory
analysis we also performed BMA (see below) on this smaller group of
models and the main results below did not change (Supplemental
Table 2 and Fig. 5).

Table 1
DCM subject demographics (mean and SD) and behavior during task.

Demographics and task information

N = 45

Age 41.9 (12.1)
Gender 20F 25M
Years of education 15.5 (2.2)
Race
Caucasian 34 (76%)
African American 9 (20%)
Asian 2 (4%)

Match emo accuracy 0.94 (0.09)
Match emo RT (s) 2.09 (0.51)
Label emo accuracy 0.84 (0.08)
Label emo RT (s) 2.01 (0.47)

Fig. 4. Bayesian Model Selection for 32 models from the winning driving input family
(input to IOG). Asterisks above the fourmodelswith the highest exceedance probabilities.
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For greater insight into our main apriori interest of labeling-
induced modulation of regional coupling we looked at the results of
our Bayesian Model Averaging (BMA) of the 32 models that won
the family-level driving input test. This provided subject and group-
level posterior distributions for the endogenous and modulatory
parameters. For a given parameter, i.e. a directed edge between two
regions, we performed two-tailed, one-sample T-tests for signifi-
cance on their mean values. Four endogenous connections survived
Bonferroni correction: the IOG projections to amygdala and vlPFC as
well as the bidirectional connections between vlPFC and Broca's area
(Table 2 and Fig. 5). With the exception of the Broca's area to vlPFC
connection, all of these values were positive, meaning that an
increased rate of a source region's neural population-level activity
results in an increase in the neural population-level activity of its
target. Finally, the modulatory effect of affect labeling showed the
vlPFC to amygdala influence to be very significantly negative, meaning
we can infer that an increased rate of vlPFC activity under the
labeling condition causes a decrease in the rate of amygdala activity
(p b 0.0001). The modulatory effect of labeling showed Broca's area to
also significantly decrease the rate of amygdala activity, albeit not as
strongly as the vlPFC. Finally, the Broca's to vlPFC modulatory
connection was found to be significantly negative, but did not survive
correction. In sum, affect labeling appears to induce a dampening effect
across the corticolimbic network where one of these connections
becomesmore negative undermodulation than its endogenous coupling
(Broca's to vlPFC) and the other two couplings (vlPFC to amygdala and
Broca's to amygdala) become significantly negative where there was
previously no significant endogenous coupling present.

3.3.3. DCM parameter correlations with behavior and external variables
There were no significant correlations between BMA parameter

estimates and reaction time or percent accuracy.

4. Discussion

To our knowledge, the current study is the first application of an ef-
fective connectivity technique to investigate causal neural interactions
during a task of affect labeling, a paradigm acquiring increasing evi-
dence as a form of incidental emotion regulation. By including a strong-
ly language-involved brain region in our network modeling we have
advanced a mechanistic understanding of what occurs while ‘putting
feelings into words’ and, namely, how the often-replicated observation
of decreased amygdala activity may arise. Our findings reinforce
common interpretations of previous regression and correlation-based

analyses of vlPFC–amygdala negative connectivity, however they both
solidify and extend them, as dynamic causal modeling permits stronger
claims about causal interactions and allows the testing of multiple con-
nections simultaneously.

As predicted, we found the right vlPFC to right amygdala connec-
tion to be strongly modulated, negatively, by labeling facial affect.
This means that during this task the vlPFC exhibits a dampening effect
on the activity of the amygdala that is not endogenously present but
rather manifests during the labeling of affect. The DCM model results
additionally support a causal role for Broca's area during labeling
affect, in that its involvement directly and negatively modulates
the amygdala as well, and may additionally indirectly modulate the
amygdala via the vlPFC. We also found strong evidence at the model
level of the data supporting a most minimal endogenous architecture.
Taken together, our results demonstrate that the most significant
regulatory effect on amygdala originates from the right vlPFC, yet also
present are weaker but nonetheless substantial labeling-induced
contributions from Broca's area to both the amygdala and to the
vlFPC. Finally, we found that the endogenous connection from IOG to
vlPFC that wemodeled was strongly supported by our data, corroborat-
ing recent work on parallel routes for the visual processing of facial
affect (Dima et al., 2011; Pessoa and Adolphs, 2010).

This study has several limitations. It is only practical to test a small
number of nodes with Dynamic Causal Modeling, and although this is
common practice, we may have missed crucial players in the network
that forms the basis of affect labeling. The dampened amygdala activa-
tion observed could additionally be caused or mediated by the left mid-
dle temporal gyrus (Wernicke's Area; BA 22) or the medial superior
frontal gyrus (BA 8) which were both shown as active in the label
emotion vs match emotion GLM contrast (Supplemental Table 1). Future
DCM studies of affect labeling should systematically add these regions
as other nodes to testedmodels, aswell as the contralateral homologues
of the regions investigated here. Additionally, other areas implicated by
previous research may be important to this regulatory network. For
example, in animal models ventromedial PFC activity has been demon-
strated to dampen amygdala activity (Quirk et al., 2003) or mediate its
dampening in humans (Lieberman et al., 2007). Other incidental
emotion regulation paradigms have additionally shown increases
in rostral anterior cingulate cortex (Berkman and Lieberman, 2009;
Cohen et al., 2011), however, our task did not significantly recruit ei-
ther the vmPFC or rACC, where significant recruitment is required for
node inclusion in DCM analyses (Stephan et al., 2010).

As for brain regions whose effective connectivity we did investi-
gate, the vlPFC and Broca's area were revealed in the targeted contrast
label emotion vs match emotion and yet they are both regions that
have been studied in cognitive contexts other than affect labeling.

Fig. 5. Graphic depiction of Bayesian Model Averaging results (Table 2). Color satura-
tion values map to mean effective connectivity parameters (in Hertz) while arrow
thickness maps to statistical significance proportional to log(1/p-value). (A) Endoge-
nous connectivity. (B) Modulation of connectivity by affect labeling representing the
three tested connections. Due to the basic bilinear DCM equation the modulation
values add to the endogenous values. Driving input (not shown graphically) enters
the IOG in both states.

Table 2
Parameter-level results (as distributions) from Bayesian Model Averaging across 32
models and 45 subjects. SD = standard deviation. **Bonferroni corrected, *p b 0.05
uncorrected.

BMA results

Mean SD p value

Endogenous
IOG to amyg 0.17 0.11 0.0000000110 **
IOG to vlPFC 0.15 0.10 0.0000001550 **
Amyg to vlPFC 0.04 0.10 0.0336 *
Amyg to Broca's 0.03 0.07 0.0124 *
vlPFC to amyg 0.00 0.18 0.9549
vlPFC to Broca's 0.20 0.09 0.0013 **
Broca's to amyg −0.03 0.20 0.2228
Broca's to vlPFC −0.11 0.20 0.0038 **

Modulatory
vlPFC to amyg −0.27 0.12 0.0000000173 **
Broca's to amyg −0.06 0.11 0.0013 **
Broca's to vlPFC −0.09 0.10 0.0090 *
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For example, and as previously mentioned, the right vlPFC has more
broadly been considered a candidate mechanism for self-control of
several types, as it additionally activates during many tasks of re-
sponse inhibition, risk-taking (gambling) and temporal discounting
(delaying gratification) (reviewed in Cohen et al., 2011). Additionally,
the right vlPFC has been implicated in attentional switching (reflexive
reorienting) (reviewed in Levy andWagner, 2011), although the rela-
tion of this function to our affect labeling paradigm is unclear. The
vlPFC has also been implicated in language studies, and in particular
the processing of semantic information, however the evidence more
strongly suggests hemispheric lateralization to the left (Dapretto
and Bookheimer, 1999; Noesselt et al., 2003; Price, 2012). To this
end we did observe bilateral vlPFC activation in the label emotion vs
match emotion contrast (Supplemental Table 1) and so we may spec-
ulate that the left vlPFC could be processing semantic (affect-related)
aspects of affect labeling while the right vlPFC acts as a regulating
mechanism. Our paradigm, however, precludes more targeted con-
trasts or factorial interactions to better tease apart these relations.
Likewise, Broca's area is a heterogeneous region (BAs 44/45) that
has been studied in multiple contexts, most prominently as serving
multiple sub-functions of affect-neutral language processing (exten-
sively reviewed in Price, 2012). Therefore, given their known func-
tional heterogeneity, our study offers greater understanding of how
to interpret the changing roles of these regions given a “neural con-
text” of affect labeling (Henson, 2005; McIntosh, 2004).

In sum, the present study investigated causal mechanisms ostensi-
bly responsible for the effect of greater vlPFC and dampened amygdala
during tasks of affect labeling, and in doing so helps situate affect label-
ing within a broader context of emotion regulation (Gyurak et al.,
2011). While there are overlaps between the mechanisms and effects
of explicit and incidental forms of emotion regulation, the latter offers
advantages to evoking this cognitive process less directly. For instance,
explicit emotion regulation paradigms, such as reappraisal, additionally
test an individual's capacity to regulate their emotions following a set of
directed instructions. As such, the subject's capability of quickly and
creatively producing a scenario that achieves the desired goal is tested
along with their regulatory abilities. In contrast, regulation of emotion
that occurs incidental to intentionally instructed goals may reflect an
individual's tendency to regulatemore automatically in domains outside
the laboratory (Berkman and Lieberman, 2009). Following this logic, if
incidental emotion regulation lends insight into an individual's ten-
dency to regulate, be it genetic or learned, it may also be used to
probe ‘latent’ dysfunction caused by, or reflective of, disease states
such as post traumatic stress disorder, anxiety, or mood disorders. In
the case of affect labeling, for example, research has already been
conducted with spider phobic subjects and suggests a pronounced
effect in mitigating fear responses by labeling affect versus cognitive
reappraisal (Kircanski et al., 2012; Tabibnia et al., 2008). Future behav-
ioral and neuroimaging work leveraging an individual's tendency to
spontaneously regulate emotion with incidental emotion regulation
strategies and the ability for this to additionally inform disorders char-
acterized by deficits in emotion regulation will be highly valued.
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