
Default egocentrism: an MVPA approach to overlap in 
own and others’ socio-political attitudes
B. Locke Welborn, 1 Macrina C. Dieffenbach,2 and Matthew D. Lieberman2

1Kairos Research, Dayton, OH 45458, USA 
2Department of Psychology, University of California, Los Angeles, CA 90095, USA 
Correspondence should be addressed to B. Locke Welborn, Kairos Research, 8163 Old Yankee Street, Suite F, Dayton, OH 45458, USA. E-mail: 
lockewelborn@gmail.com.

Abstract

Understanding the socio-political attitudes of other people is a crucial skill, yet the neural mechanisms supporting this capacity 
remain understudied. This study used multivariate pattern analysis to examine patterns of activity in the default mode network 
(DMN) while participants assessed their own attitudes and the attitudes of other people. Classification analyses indicated that common 
patterns in DMN regions encode both own and others’ support across a variety of contemporary socio-political issues. Moreover, cross-
classification analyses demonstrated that a common coding of attitudes is implemented at a neural level. This shared informational 
content was associated with a greater perceived overlap between own attitude positions and those of others (i.e. attitudinal projection), 
such that higher cross-classification accuracy corresponded with greater attitudinal projection. This study thus identifies a possible 
neural basis for egocentric biases in the social perception of individual and group attitudes and provides additional evidence for 
self/other overlap in mentalizing.
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Introduction
There is a long-standing view in social cognition that the way 
we understand the psychological states and traits of others (i.e. 
mentalizing) is fundamentally related to the way we understand 
our own psychological states and traits (self-mentalizing; Ryle, 
1949). Some theories prioritize perception and understanding 
of others, suggesting that awareness of our own mental states 
emerges when essentially ‘outward-facing’ capacities are turned 
inward (Bem, 1972) or ‘reflected’ back from others (Shrauger and 
Schoeneman, 1979; Hardin and Higgins, 1996; Ochsner et al., 
2005). Other accounts emphasize that we have privileged access 
to our own mental states and employ similar mechanisms to 
understand the minds of others through simulation or projection 
(Mitchell et al., 2005; Decety and Grèzes, 2006; Goldman, 2006). Yet 
these accounts share the underlying notion that thinking about 
the self and thinking about others involve common processes or
representations.

The potential overlap in representations of self and others is 
especially important in the domain of attitude perception. Under-
standing others’ attitudes in relation to our own is indispensable 
for establishing coalitions, identifying threats, and resolving con-
flicts. Yet when we over-rely on the assumption that our attitudes 
are similar to others, we are subject to distortions: we tend to mis-
understand the attitudes of others, systematically overestimating 

the prevalence of our ‘own’ attitudes within society (i.e. the false 

consensus effect; Ross et al., 1977; Marks and Miller, 1987) and 

exaggerating the extremity of opposing views (Robinson et al., 
1995). In this ‘naïve realism’ (Griffin and Ross, 1991; Ross and 
Ward, 1996), we project our own evaluative judgments on to oth-
ers and on to the world, presuming that any reasonable person 

would ‘see things’ the way that we do. This attitude misunder-

standing can have pernicious consequences, including reactive 

devaluation of others’ opinions (Maoz et al., 2002; Van Boven et al., 
2018) and failures in negotiation (Chamber and De Dreu, 2014).

Suggestively, research in social cognitive neuroscience has 
identified a general overlap in the neural processes involved in 
thinking about own and others’ mental states (Lombardo et al., 
2010; Van der Meer et al., 2010; Courtney and Meyer, 2020). Quan-
titative meta-analyses have generally localized this overlap in 
self- and other-related mental state processing in the default 
mode network (DMN; see e.g. Schurz et al., 2014 on mentaliz-
ing; Northoff et al., 2006 on self-referential processing). Moreover, 
meta-analyses that explicitly compare self- and other-related pro-
cessing also find extensive DMN overlap (e.g. Van der Meer et al., 
2010; Qin and Northoff, 2011). Could this neural overlap explain, 
in part, our projective tendencies in attitude (mis)understanding?

Prior evidence has been limited in several important respects 
that make this question difficult to resolve. First, most work on 
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this topic has employed univariate approaches that examine the 
presence of common clusters of activation across the two con-
ditions. Better evidence connecting overlapping neural patterns 
to shared attitudes would be obtained by employing multivariate 
pattern analysis (MVPA; Weaverdyck et al., 2020), but few studies 
have explicitly compared self and others with multivariate meth-
ods (Oosterwijk et al., 2017; Gilbert and Fung, 2018; Thornton et 
al., 2019). Second, most mentalizing tasks focus on understand-
ing beliefs rather than attitudes (Denny et al., 2012; Schurz et al., 
2014), which may exhibit qualitative differences and are worthy 
of independent attention.

Current study
In the present research study, we examine whether thinking about 
one’s own and others’ socio-political attitudes depends upon com-
mon multivoxel pattern information in the DMN/social brain. 
We further seek to assess whether this neural overlap maps on 
to presumed similarity of attitudes ascribed to self and others. 
If the DMN processes own and others’ attitudes using common 
processes and representations, information relevant to own and 
others’ attitudes may be successfully decoded from DMN activ-
ity using similar classification algorithms and models. We sought 
to test this hypothesis directly using multivariate pattern analysis 
(MVPA) of responses in the DMN while participants thought about 
own and others’ attitudes regarding a variety of contemporary 
socio-political issues. In our primary analyses, we first sought to 
determine whether activation patterns in the DMN could predict 
participants’ own attitudes and their estimates of others’ atti-
tudes. Next, we sought to evaluate own/other overlap through a 
cross-classification strategy: classification would be trained with 
data from Own Attitude trials and then tested using data from 
Other Attitude trials (and vice versa). If these cross-classifications 
were successful, it would constitute significant evidence that own 
and others’ attitudes are encoded in the DMN using overlapping 
processes and/or representations, perhaps forming the basis of 
egocentric projection of attitudes.

Methods
Participants
Twenty-eight participants (21 female and 7 male, age: M = 21.89, 
s.d. = 3.70, range = 18–38) were recruited by email and Internet 
solicitations from the psychology research subject pool at Uni-
versity of California, Los Angeles (UCLA). All participants had 
been enrolled as undergraduate students at UCLA for at least two 
quarters and therefore were likely to possess reasonable levels of 
exposure to the attitudes of other UCLA students. All participants 
were compensated $40 for their contribution to this research or 
received course credit. Participants provided written informed 
consent approved by the UCLA Institutional Review Board. Five 
participants’ data were not included in these analyses due to par-
tial acquisition failure or MRI artefacts (final n = 23, 18 female and 
5 male, age: M = 21.14, s.d. = 4.06, range = 18–38).

Own Attitude and Other Attitude estimation task
Attitude items were derived from a larger set of 155 socio-political 
issues (e.g. abortion rights and Medicare privatization) that had 
previously been employed in research on the neural correlates 
of consensus estimation and the false consensus effect (Welborn 
et al., 2017; Welborn and Lieberman, 2018). From this larger set, 
30 attitude items were selected such that (i) the majority of prior 

participants were familiar with each item and (ii) the majority of 
prior participants expressed an attitude for each item (i.e. did not 
express ‘no opinion’). The complete list of items is included in the 
Supplementary Table S1.

While undergoing functional magnetic resonance imaging 
(fMRI), participants indicated their Own Attitudes as well as esti-
mates of Others’ Attitudes for each item (Figure 1). To do so, they 
used an on-screen numeric scale ranging from 0 to 100 in integer 
increments (anchored at 0—‘Oppose’ and 100—‘Support’). Partic-
ipants were instructed to use the scale to indicate the intensity of 
their opinions (and their estimates of others’ opinions) regarding 
the issues, treating 0 as ‘Complete Opposition’, 25 as ‘Moderate 
Opposition’, 50 as ‘Neutrality’/‘Neither Supports nor Opposes’, 
75 as ‘Moderate Support’ and 100 as ‘Complete Support’. After 
practicing with a separate set of attitude items (not analysed), par-
ticipants could use the scale to select any desired response value 
without difficulty.

On Own Attitude trials, participants were instructed to indicate 
their own attitude regarding the target issue (with the on-screen 
query ‘Your view?’). On Other Attitude trials, participants were 
instructed to indicate the attitude they believe the ordinary UCLA 
undergraduate student holds regarding the target issue (with the 
on-screen query ‘Ordinary view?’). In case of ambivalence or 
uncertainty, participants were instructed to indicate their overall 
or holistic view (or the overall view of the ordinary UCLA student). 
Thus, the task (as in prior studies) involves consensus estima-
tion regarding a meaningful in-group (fellow UCLA undergraduate 
students), although it was not described to participants explic-
itly in terms of estimating group consensus. Importantly, the task 
did not involve estimating the attitudes of any particular person 
but rather those of the generic ‘ordinary UCLA student’. A color-
judgment task condition was also included as a non-social control 
(see Supplementary Materials for details).

To facilitate ease of performance and reduce task demands, 
trials were grouped by condition into blocks consisting of five 
trials. Two blocks of each condition were included in each of 
three functional runs (i.e. 6 blocks and 30 trials per condition per 
person—yielding 1380 trials for between-subjects MVPA classifi-
cations, as outlined below). Block order (i.e. task condition) was 
randomized within each functional run, subject to the constraint 
that no condition repeated twice in succession. Each block was 
preceded by a 2 s cue (e.g. ‘YOUR VIEW’, ‘ORDINARY VIEW’ and 
‘COLOR’) to prepare participants for the upcoming block. For each 
trial, participants had a maximum duration of 10 s to manip-
ulate the scale and confirm their response. Trial presentation 
was self-paced, with a jittered inter-trial interval commencing 
immediately after participants’ responses were registered (or 10 
s elapsed without a response). Inter-trial jitter was selected from 
an exponential random distribution with a range of 4–9 s and a 
mean value of 5 s. The order of items within each condition was 
randomized across blocks and runs.

Sample size and the number of trials per participant were 
guided by previous work conducted using a consensus estima-
tion task in the same population (UCLA undergraduates) (Welborn 
et al., 2017; Welborn and Lieberman, 2018). A larger number of 
attitude items (trials) per person would have been desirable in 
order to facilitate within-subjects MVPA classifications, but the 
number of items was constrained by the variable response time 
across participants for attitude expression and consensus esti-
mation, as well as the limited duration of available scanning
sessions.
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Fig. 1. While undergoing fMRI, participants completed an attitude judgment task in which they indicated their own attitudes (Own Attitude trials) and 
estimated the attitudes of the ordinary person (Other Attitude trials) for a variety of contemporary socio-political issues (see ‘Methods’ section and 
Supplementary Table S1 for details). Participants responded using a 100-point scale, and their judgments were subsequently divided into evaluative 
categories reflecting differing degrees of endorsement: Support (≥66), Neutral (>33 and <66) and Oppose (≤33). Participants also performed a 
color-judgment control task. Univariate BOLD responses and multivariate patterns of BOLD activation were extracted from the DMN for analysis (see 
‘Methods’ and ‘Results’ sections). Regions of the DMN were identified based upon automated association test meta-analysis with Neurosynth (www.
neurosynth.org) exceeding a threshold of t = 7.0. Clusters were identified in the medial prefrontal cortex (MPFC; pink), posterior cingulate/precuneus 
(PCC; blue), left temporoparietal junction (LTPJ; green), right temporoparietal junction (RTPJ; not shown) and left and right middle temporal gyrus (not 
shown).

fMRI data acquisition
All imaging data were acquired using a 3.0-Tesla Siemens 
Prisma scanner at the Ahmanson-Lovelace Brain Mapping Center 
at UCLA. Across three functional runs, approximately 2100 
T2*-weighted echo-planar images were acquired (∼700 per run) 
during completion of the experimental task, with interleaved 
acquisitions using a multiband acceleration factor of 8 (slice 
thickness = 2 mm, gap = 0 mm, 72 slices, TR = 720 ms, TE = 37 ms, 
flip angle = 52∘, matrix = 104 × 104, field of view = 208 mm, 
phase encoding: anterior-to-posterior). An oblique slice angle 
was used to minimize signal dropout in ventromedial por-
tions of the brain. In addition, we acquired a T1-weighted 
magnetically prepared rapid acquisition gradient echo anatom-
ical image (slice thickness = 1 mm, 176 slices, TR = 2530 ms,
TE = 3.31 ms, flip angle = 7∘, matrix = 256 × 256, field of
view = 256 mm).

fMRI data preprocessing
Structural and functional data were processed using SPM12 (Well-
come Department of Cognitive Neurology, London, UK) (Penny 
et al., 2007). Within each functional run, image volumes were 
realigned to correct for head motion, segmented by tissue type, 
normalized into standard Montreal Neurological Institute (MNI) 
stereotactic space (resampled at 2 × 2 × 2 mm) and smoothed 
(6 mm Gaussian kernel, full width at half maximum). Smoothed 
images were employed for the univariate analyses in order to 
maximize signal-to-noise ratio; however, unsmoothed images 
were used for the multivariate analysis (Misaki et al., 2013).

Region of interest definition for univariate and 
multivariate analyses
Region of interest (ROI) analyses were conducted to directly assess 
the overall recruitment and multivariate informational content 
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of the DMN during the task. A priori ROIs were derived from 
automated meta-analysis through www.neurosynth.org (Yarkoni 
et al., 2011), using association test masks identified by the term 
‘default mode’ and exceeding a t threshold of 7.0 (see Figure 1 
and Supplementary Materials for details) In the analyses below, 
the network is considered as a whole (i.e. including the union of 
all voxels in constituent DMN subregions as features).

For univariate analyses, parameter estimates were extracted 
from all ROIs using MarsBaR (Brett et al., 2002) for statistical com-
parisons. Parameter estimates were evaluated at the group level 
using general mixed-effects models implemented using the lme4 
package (Bates et al., 2015) in the R statistical software (http://
www.r-project.org/).

Univariate analytic approach
General linear models (GLMs) were defined for each participant, 
with trials modelled as variable–duration epochs. Each trial was 
convolved with the canonical (double gamma) hemodynamic 
response function. All models controlled for six motion param-
eters (three translations and three rotations), as well as linear 
trends and differences between runs. The time series was high-
pass filtered using a cutoff period of 128 s, and serial auto-
correlations were modelled as an autoregressive AR(1) process. 
Individual-level statistics were aggregated for group-level com-
parisons and evaluated with a mixed-effects model. For whole-
brain analyses, correction for multiple comparisons was imple-
mented using Gaussian Random Field theory in order to yield a 
cluster family-wise error of P < 0.05 with an initial (voxel-wise) 
cluster-formation threshold of P < 0.001.

Multivariate analytic approach
In order to conduct multivariate pattern analysis of brain imag-
ing data from the task, a series of beta images were first derived 
from univariate GLMs (Rissman et al., 2004). Separate models 
were constructed for ‘Own Attitude’ and ‘Other Attitude’ trials 
for each run to avoid possible collinearity between responses to 
the same or similar attitudes across targets. Thus, for example, 
to derive a beta series for the ‘Own Attitude’ condition, individual 
parameters were modelled for each trial from the ‘Own Attitude’ 
condition, while all trials in the ‘Other Attitude’ condition were 
aggregated under a single parameter. Models also included six 
motion-related parameters, as for univariate GLMs (see above). 
Data from the beta series for each subject were imported into 
Python 3.7.6 using nibabel version 2.1.0 (https://github.com/nipy/
nibabel/releases/tag/2.1.0) and extracted for DMN voxels. Finally, 
data were concatenated across subjects for between-subjects 
multivariate analyses. Within-subject classifications would suffer 
from the small number of attitude trials available for each partic-
ipant (30 each for ‘Own Attitude’ and ‘Other Attitude’ conditions); 
between-subject analyses can exploit all 1380 trials in the sample 
(suitably divided into training and testing sets as noted below).

Between-subject multivariate classification analyses were con-
ducted using scikit-learn version 0.20.2 (Pedregosa et al., 2011) 
pipelines employing three steps: (I) missing voxel imputation, (II) 
standard scaling and (III) support vector machines (SVM) classi-
fication with a radial basis function (RBF) kernel. Missing voxel 
imputation replaced missing values with the mean value from 
each voxel. Standard scaling mean centred data from each voxel 
and divided raw values by their standard deviation. Finally, SVM 
classification assigned a class label to each case (i.e. trial) within 
the dataset, using an RBF with default cost and gamma hyperpa-
rameters (C = 1, gamma = 1/n_features). Importantly, each of the 

above steps was performed within cross-validation folds, so that 
there would be no data leakage from the training to the testing 
dataset.

Cross-validation accuracy was assessed using a group shuffle 
split strategy. Groups of three participants at a time were itera-
tively held out as test sets, with the remaining 20 participants 
employed as a training set, over a total of 100 iterations per analy-
sis (see Supplementary Methods for details). Permutation testing 
was employed to determine whether cross-validation classifier 
accuracy differed significantly from chance, with 1000 permu-
tations per analysis. For each permutation, dataset class labels 
were randomly permuted within participants, and the classifi-
cation algorithm was repeated. The P-value was then estimated 
from the proportion of permutations for which classifier accuracy 
exceeded the accuracy with non-permuted (true) labels (Ojala 
and Garriga, 2010). In all cases, balanced accuracy scores were 
used (in which accuracy for a class is inversely weighted by class 
frequency) so that a classification cannot emerge as significant 
simply by virtue of predicting the most frequent class (‘Support’, 
for the present analyses).

Searchlight MVPA analyses were performed within the DMN 
in order to spatially localize voxels associated with Own and 
Other Attitude information. A 6 mm sphere was iterated through 
the DMN, and only patterns from grey matter voxels were anal-
ysed. Parameters for the searchlight MVPA were identical to those 
employed for the ROI as a whole, except that a leave-one-subject-
out cross-validation strategy was used to complete the analysis 
within a practicable duration. Balanced accuracy scores were 
computed for each voxel, and permutation testing was used again 
to assess significance.

Results
Behavioural overlap in responses to Own and 
Other Attitude items
Over the course of the experiment, for each of 30 socio-political 
attitudes, participants indicated (i) their own attitudes and (ii) 
their estimates of the attitude of an ordinary UCLA undergrad-
uate (Figure 2). These ratings were made using a 100-point on-
screen scale ranging from Complete Opposition (scale value ‘0’) 
through Neutrality (scale value ‘50’) to Complete Support (scale 
value ‘100’). These responses, hereafter referred to as Own Atti-
tudes and Others’ Attitudes, form the basis of the following anal-
yses, which examine overlap at the attitudinal level and in the 
underlying neural correlates.

Across all items and all subjects, a strong association was 
observed between Own Attitude values and corresponding Other 
Attitudes (r = 0.701, P < 0.001, Figure 2C; mixed-effects model with 
participants as random factor: β = 0.559, P < 0.001). Participants’ 
consensus estimates overestimated support for their own atti-
tudes (relative to the actual sample mean attitude), on average, 
by 11.36 points out of the 100 point scale (95% CI [9.32, 13.40]), 
in line with our prior work (cf., mean overestimate of 12.17 in 
Welborn et al., 2017). These results suggest that projection from 
self to others is robust for our sample, consistent with previous 
literature on egocentrism and consensus estimation bias (Krueger 
and Clement, 1994).

To assess potential overlap in psychological and neural pro-
cessing of Own and Others’ Attitudes using multivariate classifi-
cation techniques, items were divided into three groups, reflecting 
evaluative categories of Opposition (Own/Other score ≤33), Neu-
trality (33 < Own/Other score < 66) and Support (Own/Other score 
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Fig. 2. Own Attitudes and estimates of Other Attitudes varied across both participants and attitude items (issues). Responses for Own and Other 
Attitudes were divided into Oppose (≤33), Neutral (>33 and <66) and Support (≥66) evaluative categories. The heterogeneity of attitudinal responses is 
depicted in panels A1 (Own Attitudes) and A2 (Other Attitudes) in the form of strip plots. Large diamonds indicate the sample means for each attitude 
item, split by category. Panels B1 and B2 display (for Own and Other Attitudes, respectively) histograms of attitude scores by evaluative categories, 
along with estimated underlying Gaussian distributions. The over-representation of Own Attitudes that were fully endorsed (scale value 100) is 
evident. Panel C depicts the strong correlation between Own Attitude and Other Attitude values across the sample, suggestive of overlap in underlying 
psychological representations. Panel D plots mean reaction times for Own and Other Attitudes for each evaluative category with 95% confidence 
intervals. Support judgments were slightly faster than other evaluative categories, but overall reaction times are comparable (see also Supplementary 
Materials and Supplementary Table S1).
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≥66). Figure 2 displays histograms of the frequencies of attitude 
items in each category, plotted separately for Own Attitudes 
(B1) and Other Attitudes (B2). Attitude items are approximately 
equally distributed between the three categories, with the pro-
nounced exception of a surplus of Own Attitude items indi-
cating complete support. Classification analyses reported later 
are thus performed with and without these strongly supportive 
attitudes, which might plausibly constitute a separate category 
phenomenologically. Figure 2 also displays the heterogeneity of 
endorsement across different attitude items in the form of strip 
plots for each issue (A1 and A2). Reaction times did not differ dra-
matically between conditions (means were all between 5.70 and 
6.30 s). For details, see Supplementary Materials and Supplemen-
tary Table S1.

Univariate analysis of DMN activity to own and 
others’ attitudes
ROI analyses were conducted on the DMN in order to assess 
(i) whether the DMN would be more responsive to attitude 
judgments (Own/Other items) than to control judgments (color 
items), (ii) whether DMN activation would differ between Own 
and Other Attitude judgment and (iii) whether DMN activation 
would differ between evaluative categories (Oppose, Neutral and 
Support). The results (see Supplementary Results) confirm that 
the DMN was similarly responsive to Own and Other Attitude 
judgment but suggest that the mean level of hemodynamic activ-
ity in the DMN does not differ based upon evaluative category. 
Whole-brain analyses provided largely consistent evidence, with 
similar responses in DMN regions to Own and Other Attitudes 
(see Supplementary Results and Supplementary Tables S2 and 
S3 and Figures S2 and S3). Overall, the processes engaged by the 
DMN when thinking about supportive, neutral and opposed atti-
tudes may not differ dramatically for self and others. However, the 
underlying patterns of hemodynamic activity, potentially reflect-
ing representations of social attitudes, may nevertheless differ 
between attitudes even in the absence of differences in the mean 
hemodynamic response.

MVPA of Own Attitudes
MVPAs in the DMN were conducted to assess whether Own and 
Others’ attitudes would exhibit similar properties. First, we sought 
to determine whether DMN activity contained information rel-
evant to Own Attitude positions. Thus, a three-way classifica-
tion was performed, attempting to identify attitudes in Support, 
Oppose, and Neutral categories. Classification was successful for 
Own Attitudes, with a mean accuracy of 41.87% (P = 0.003; chance 
accuracy: 37.24%; Figure 3A1). Classification accuracy is above 
chance for the majority of participants (Figure 3B1) and attitude 
items (Supplementary Figure S4A). In the absence of 100-point 
(full support) items, classification accuracy was slightly improved 
at 42.42%. These results suggest that DMN activity encodes the 
basic features of the evaluative content of one’s own attitudes 
and that this encoding is at least somewhat consistent across 
attitudes and persons (enabling between-subject classification).

Examination of classifier confusion between evaluative cat-
egories (i.e. Support, Neutral, and Oppose; Figure 3C1) shows 
that Support items and Neutral items are identified relatively 
well (∼61% and 50% true positive rate, or ‘recall’, respectively) 
compared to Oppose items (14%). That is, of the items actually 
supported by participants, 61% were correctly assigned to the 

Support category by the classifier; of the items that were actu-
ally neutral, 50% were correctly assigned to the Neutral category; 
of the items actually opposed, only 14% were correctly assigned 
to the Oppose category. Overall, classification was not ‘confused’ 
by the Support and Neutral items, mostly assigning them to the 
correct category; in contrast, Oppose items were often assigned 
inappropriately to the Neutral or Support categories.

To further illustrate the relationship between evaluative cate-
gories and classification decisions, Figure 4 plots, for each attitude 
item (e.g. ‘Assisted Suicide’ and ‘Abortion rights’), the proportion of 
participants who endorsed a given position (e.g. ‘Support’) against 
the proportion predicted to endorse that position by the classifier 
(note the differing scales for each position). These plots show that 
for most categories, as an attitude item is psychologically more 
likely to fall into a given evaluative category (for our sample), 
the classifier is more likely to assign that category appropriately. 
Thus, universal health care is highly likely to be labelled ‘support’ 
by participants and highly likely to be labelled ‘support’ by the 
classifier. Note that this result is not independent of the permuta-
tion test reported earlier and depicted in Figure 3A and reflects 
further visualization/assessment of these results rather than 
a completely separate analysis. With this caveat, correlations 
between the proportion of participants endorsing a given position 
and the proportion predicted to do so are significant for Support 
and Neutral items, though not for Oppose items (Figure 4).

MVPA of others’ attitudes
Next, we sought to determine whether DMN activity also con-
tains information relevant to Other Attitude judgments. Again, a 
three-way classification was performed, with the goal of identi-
fying attitudes in Support, Oppose, and Neutral categories. For 
Other Attitudes, this reflected the participant’s judgment that the 
ordinary person would support, oppose, or feel neutral about a 
given attitude item. Classification was also successful for Other 
Attitudes, with a mean accuracy of 38.00% (P = 0.024, chance 
accuracy: 34.07%, Figure 3A2; mean accuracy 37.81% without 100-
point responses). Classification accuracy is above chance for the 
majority of participants (Figure 3B2) and attitude items (Supple-
mentary Figure S4B). These results suggest that DMN activity also 
encodes the evaluative content of Others’ attitudes and that this 
encoding may similarly generalize over persons to some extent.

Examination of classifier confusion (Figure 3C2) reveals that, 
as for Own Attitude classification, Support and Neutral items 
are identified relatively well (true positive rate of approximately 
53% and 49%, respectively), while Oppose items are identified less 
effectively (11%). Figure 4 also shows that, generally speaking, as 
participants were more likely to think that the ordinary person 
would endorse a given position, the classifier was more likely to 
assign the Other Attitude to that category appropriately [Support 
(A2), Neutral (B2) and Oppose (C2)]. Correlations are significant for 
Support and Neutral items but not for Oppose items (Figure 4).

Cross-classification MVPA of own and others’ 
attitudes
In order to directly test whether or not the information content 
used in Own and Other classifications is common or distinct, 
we performed cross-classification analyses. First, we trained an 
SVM classifier on data and category labels associated with Own 
Attitudes, and then tested this classifier on data and category 
labels associated with Other Attitudes. This Own-to-Other cross-
classification achieved an accuracy of 39.66% (P = 0.009; chance 
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Fig. 3. Three-way classifications for Own Attitudes (panels A1, B1 and C1) and Other Attitudes (panels A2, B2 and C2) indicate that BOLD activation 
partners in the DMN contain information relevant to evaluative categories (Oppose, Neutral and Support). Panels A1 and A2 show cross-validated 
classification accuracy vs a histogram of permutation test accuracy scores. Panels B1 and B2 show classification accuracy across study participants, 
with above-chance accuracy for most individuals. Panels C1 and C2 show normalized confusion matrices for Own and Other Attitude classifications, 
with better performance for Support and Neutral items than for Oppose items.

accuracy: 36.22%, Figure 5A1; mean accuracy was 39.26% without 
100-point responses). Own-to-Other cross-classification accuracy 
is above chance for the majority of participants (Figure 5B1) and 
attitude items (Supplementary Figure S4C). The proportion of atti-
tudes assigned by the classifier to each category also tracks with 

the number of Other Attitudes actually so labelled by participants 
(see Figure 6 A1, B1 and C1).

Next, we trained and tested a classifier in the other ‘direc-
tion’, training on data and category labels associated with Other 
Attitudes and testing on data and labels associated with Own 
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8  Social Cognitive and Affective Neuroscience, 2023, Vol. 18, No. 1

Fig. 4. To further assess and better visualize the classification analyses depicted in Figure 3, we evaluate the strength of association, across attitude 
items, between the proportion of judgments predicted by the classifier to be in a given evaluative category (i.e. Support, Neutral, and Oppose) and the 
proportion that actually are in that category. Because the small number of attitude items (30) increases the leverage of extreme data points and the 
influence of possible outliers, we report Spearman’s (rs) and Kendall’s Tau-b (rτ) coefficients in addition to Pearson’s coefficients (rp). Associations are 
plotted separately for each target (Own, left panels; Other, right panels) and for each category [Support (A1 and A2), Neutral (B1 and B2) and Oppose 
(C1 and C2)]. This avoids over-plotting (though note the differing y-axis scales) and allows for separate evaluation of each category. Please also note 
that these analyses are not independent of the classifications depicted in Figure 3 and are intended to further visualize these classifications rather 
than as completely separate tests. With this caveat, it is interesting to note that these associations are generally significant for Support and Neutral 
attitudes but not for Oppose. *P < 0.05, **P < 0.01, ***P < 0.001. (A1) Own Support: rp = 0.671, P < 0.001; rs = 0.546, P = 0.002; rτ = 0.378, P = 0.008. (A2) Other 
Support: rp = 0.557, P = 0.001; rs = 0.450, P = 0.012; rτ = 0.334, P = 0.010. (B1) Own Neutral: rp = 0.432, P = 0.017; rs = 0.321, P = 0.084; rτ = 0.213, P = 0.104. 
(B2) Other Neutral: rp = 0.629, P < 0.001; rs = 0.507, P = 0.004; rτ = 0.380, P = 0.004. (C1) Own Oppose: rp = 0.306, P = 0.100; rs = 0.326, P = 0.079; rτ = 0.236, 
P = 0.088. (C2) Other Oppose: rp = 0.056, P = 0.769; rs = 0.075, P = 0.691; rτ = 0.058, P = 0.664.
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B. L. Welborn et al.  9

Fig. 5. Three-way classifications for Own-to-Other (panels A1, B1 and C1) and Other-to-Own (panels A2, B2 and C2) cross-classification analyses. These 
analyses train on Own Attitude data and test on Other Attitude data (and vice versa). Panels A1 and A2 show cross-validated classification accuracy vs
a histogram of permutation test accuracy scores. Panels B1 and B2 show classification accuracy across study participants, with above-chance accuracy 
for most individuals. Panels C1 and C2 show normalized confusion matrices for Own-to-Other and Other-to-Own classifications.
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Fig. 6. To further assess and better visualize the cross-classification analyses depicted in Figure 5, we evaluate the strength of association, across 
attitude items, between the proportion of judgments predicted by the classifier to be in a given evaluative category (i.e. Support, Neutral, and Oppose) 
and the proportion that actually are in that category. Because the small number of attitude items (30) increases the leverage of extreme data points 
and the influence of possible outliers, we again report Spearman’s (rs) and Kendall’s Tau-b (rτ) coefficients in addition to Pearson’s coefficients (rp). 
Associations are plotted separately for each target (Own-to-Other, left panels; Other-to-Own, right panels) and for each category [Support (A1 and A2), 
Neutral (B1 and B2) and Oppose (C1 and C2)]. Please note that these analyses are not independent of the classifications depicted in Figure 5 and are 
intended to further visualize these classifications rather than as completely separate tests. With this caveat, it is interesting to note (as in Figure 4) 
that these associations are generally significant for Support and Neutral attitudes but not for Oppose. *P < 0.05, **P < 0.01, ***P < 0.001. (A1) 
Own-to-Other Support: rp = 0.567, P = 0.001; rs = 0.493, P = 0.006; rτ = 0.368, P = 0.005. (A2) Other-to-Own Support: rp = 0.611, P < 0.001; rs = 0.537, 
P = 0.002; rτ = 0.372, P = 0.004. (B1) Own-to-Other Neutral: rp = 0.506, P = 0.04; rs = 0.431, P = 0.017; rτ = 0.345, P = 008. (B2) Other-to-Own Neutral: 
rp = 0.497, P = 0.005; rs = 0.439, P = 0.015; rτ = 0.301, P = 0.021. (C1) Own-to-Other Oppose: rp = 0.223, P = 0.237; rs = 0.173, P = 0.361; rτ = 0.105; P = 0.447. 
(C2) Other-to-Own Oppose: rp = 0.013, P = 0.945; rs = 0.099, P = 0.640; rτ = 0.065, P = 0.642.
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Fig. 7. Associations between accuracy and proportion of Own–Other Attitude overlap across attitude items were assessed for Own-to-Other (A) and 
Other-to-Own (B) cross-classifications. Strength of associations is indicated for Pearson (rp), Spearman (rs) and Kendall’s Tau-b (rτ) coefficients. 
Accuracy scores for each attitude item are inversely weighted by maximal class frequency (comparable to the balanced weighting scheme used to 
assess general classifier accuracy) to avoid possible bias in favour of attitudes that are more homogenous across participants (e.g. most participants 
indicating ‘Support’). *P < 0.05, **P < 0.01. (A) Own-to-Other cross-classification accuracy is positively associated with own–other overlap when assessed 
by Spearman’s and Kendall’s Tau coefficients (rs = 0.421, P = 0.020; rτ = 0.339, P = 0.009) but only marginal with Pearson’s coefficient (rp = 0.354, 
P = 0.055). Associations unweighted for class frequency are significant for all three measures (rp = 0.476, P = 0.008; rs = 0.407, P = 0.026; rτ = 0.330, 
P = 0.011). (B) Other-to-Own ‘reverse’ cross-classification accuracy is also positively associated with own–other overlap when assessed by Spearman’s 
and Kendall’s Tau coefficients (rs = 0.457, P = 0.011; rτ = 0.339, P = 0.009) but marginal with Pearson’s (rp = 0.354, P = 0.055). Associations unweighted for 
class frequency are significant for all three measures (rp = 0.494, P = 0.006; rs = 0.517, P = 0.003; rτ = 0.409, P = 0.0002).

Attitudes. This reverse cross-classification achieved a compa-
rable accuracy of 40.38% (P = 0.002; chance accuracy: 35.41%; 
Figure 5A2; mean accuracy 40.11% without 100-point items). The 
Other-to-Own cross-classification accuracy is above chance for 
the majority of participants (Figure 5B2) and attitude items (Sup-
plementary Figure S4D). The proportion of attitudes assigned to 
each category also tracks with the number of Own Attitudes so 
labelled by participants (Figure 6A2, B2 and C2).

The results of Own-to-Other and Other-to-Own
cross-classifications suggest that the information employed by 
the classifiers in assigning items to evaluative categories is 
comparable for Own and for Other judgments. While there are 
certainly instances in which own and others’ attitudes are likely 
to be processed very differently, in the present study, DMN activity 
seems to reflect common encoding and/or processing with respect 
to the evaluative categories examined.

Does common processing for own and others’ attitudes at the 
neural level help explain the overlap at the behavioural level 
(i.e. projection)? To address this question, we sought to assess 
the association between cross-classification accuracy and own–
other attitudinal overlap. Common processes or representations 
should best facilitate accurate cross-classification for attitude 
items where own and others’ attitudes are perceived to be sim-
ilar but may not help (or may even hinder) cross-classification 
when own and others’ attitudes are perceived to diverge. As 
depicted in Figure 7, both Own-to-Other and Other-to-Own 
cross-classification accuracies were significantly associated with 
attitude overlap (Own-to-Other: rs = 0.421, P = 0.020; rτ = 0.339, 
P = 0.009, rp = 0.354, P = 0.055; Other-to-Own: rs = 0.457, P = 0.011; 
rτ = 0.339, P = 0.009; rp = 0.354, P = 0.055, see Supplementary 
Methods).1 These results suggest that common processing of Own 
and Other Attitudes may contribute to the observed prevalence 
of egocentric projection in the perception of group attitudinal 
positions.

1 While Pearson’s correlation coefficient is only marginally significant, all 
three measures of correlation strength are significant with the removal of the 
largest multivariate outlier: ‘Banning books’.

Searchlight MVPA of own and others’ attitudes 
within the DMN
To spatially localize subregions within the DMN that may be 
especially critical to the processing of own and others’ atti-
tudes, searchlight MVPA was conducted within this volume. The 
results indicate that information relevant to own and others’ 
attitudinal positions is encoded in multiple DMN subregions, 
including the medial prefrontal cortex (MPFC), posterior cingu-
late (PCC)/precuneus, right temporoparietal junction (RTPJ), and 
left temporoparietal junction (LTPJ) (Figure 8 and Supplementary 
Table S4). However, only PCC and RTPJ clusters are present in con-
junction analysis (Nichols et al., 2005). We note that searchlight 
analyses are not independent of the MVPA analysis of the whole 
DMN ROI and are included as further visualizations of the primary 
effects reported above.

Discussion
The present study examined putative overlap in multivariate 
patterns of activity associated with own and others’ attitudes in 
the DMN in order to (i) determine whether shared processes are 
involved in thinking about own and others’ mental states and 
(ii) improve understanding of egocentrism and consensus bias in 
social perception. With these ends in mind, classification analy-
ses were conducted for Own and Other Attitude items in order 
to determine (i) whether information about attitude support or 
opposition would be present in patterns of DMN activity and 
(ii) whether such information would be represented similarly in 
judgments of own and others’ attitudes. The results show that 
both own and others’ attitudinal positions are encoded within the 
DMN network, insofar as classification analyses were significant 
for judgments of both types of attitudes. Moreover, the success 
of cross-classification analyses (both Own-to-Other and Other-
to-Own) implies a significant degree of overlap in the encoding 
of own and others’ attitudinal positions. Thus, DMN not only 
encodes own and others’ attitudinal positions, but it appears to 
do so in similar ways. Lastly, cross-classification accuracy was 
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Fig. 8. Searchlight MVPA analysis of the DMN reveals regions in which localized patterns of BOLD activity could successfully classify trials between 
evaluative categories (Support, Neutral, and Oppose) for Own Attitudes, Other Attitudes, and both (conjunction). Significant clusters were identified in 
all regions of the DMN. Searchlight analysis used the same radial basis function SVM algorithm as employed for the whole DMN, iterating over 6 mm 
spheres centred around DMN voxels. Only signals from grey matter voxels were analysed. Permutation testing (with 1000 permutations) was used to 
derive an empirical P-value for classification accuracy at each voxel; only voxels significant at P < 0.001 (uncorrected), with a cluster size k ≥ 15, are 
displayed. Axial slices are at MNI z = 36.

associated with the magnitude of Own/Other Attitude overlap for 
each issue. This further result suggests that overlap in neural 
responses may drive perceived overlap between self and others 
in attitudes, with greater own/other neural overlap manifesting 
in the presumption that others share our attitudes.

These findings make an important contribution to our under-
standing of the shared processes involved in thinking about own 
and others’ mental states and further extend this work into the 
attitudinal domain. Not only do we observe activation in common 
regions within the DMN when thinking about own and others’ 
attitudes, but multivariate patterns of activation contain similar 
informational content for self and other, enabling successful clas-
sification and cross-classification. It is not conceptually necessary 
that the neural architecture supporting attitude perception and 
understanding should be structured in this way; own and others’ 
attitudinal positions might have been encoded in completely sep-
arate brain regions or through different patterns that do not share 
informational content that would enable cross-classification. The 
present study thus provides an important conceptual advance in 
exhibiting the shared nature of these attitudinal representations 
in the DMN.

Default egocentrism as a possible consequence 
of shared DMN representations
Common encoding of own and others’ attitudes in the DMN may 
also help explain the pervasive tendency towards egocentrism 
exhibited in consensus estimation (Ross et al., 1977). Our previous 
work has examined how motivated processes might contribute 
to the false consensus effect (Welborn et al., 2017; Welborn and 
Lieberman, 2018). The present study provides an alternative route 

towards consensus bias in terms of more fundamental overlap 
in DMN representations of social attitudes: false consensus may 
occur due to over-reliance on common coding, through a process 
akin to ‘attribute substitution’ (Kahneman and Frederick, 2002).

When faced with a difficult or complex question, for which 
crucial information may be unavailable or incomplete, social 
thinkers often substitute a related but easier question—leading to 
well-known biases (Tversky and Kahneman, 1974). Social thinkers 
might substitute their own, readily accessible attitudes and opin-
ions for the unknown and sometimes conflictual attitudes of 
complex social groups. We theorize that neural usage of com-
mon representations and processes for own and others’ attitudes 
may facilitate this interpersonal attribute substitution, resulting 
in a form of naïve realism in ordinary social perception (Ross and 
Ward, 1996). This naïve realism construes attitudes not as mere 
summary representations of own (or others’) evaluative positions 
but rather as direct perceptions of objective facts about the world. 
Our treatment of attitudes may thus be much more akin to ‘see-
ing’ than to thinking: just as we presume that colors and shapes 
are ‘out there’ in the world as inalienable features of the objects 
we perceive, so too do we perceive the evaluative qualities of 
important social and moral issues to be objective features of our 
shared social reality. The present results are thus consistent with 
a model of psychological ‘seeing’ as a pre-reflective, effortless 
experience, which inhibits perceptual alternatives and appears 
to the perceiver as given or self-evident (CEEing; see Lieberman, 
2022).

Shared representations for self and others may thus help con-
stitute our baseline sense of what is real and valid in the socio-
political and moral sphere. If others disagree with us, it is not 
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because their subjective process of attitude formation occurred 
differently from our own but rather because of their faulty ‘per-
ception’ of socio-political reality. Rather than effortfully examin-
ing the differences of opinion, it may be easier to presume that 
others are biased (Pronin et al., 2004) or susceptible to errors 
in reasoning (Mata et al., 2013). The resulting ‘bias blind spot’ 
(Pronin et al., 2002) may reflect this difference in modelling of 
others’ attitudes based upon our own position. If attitudes are 
represented by default as (naïve) realist social knowledge about 
issues and appropriate orientations towards those issues, rather 
than ascriptions of positions to persons, egocentric projection is 
a natural consequence (and may be difficult to correct). Our own 
attitudes, understood as naïve realist perceptions of social reality, 
may constitute a potent anchor, from which we adjust only effort-
fully. In this light, the present results are also consonant with prior 
work, suggesting that MPFC activity reflects anchoring and adjust-
ment in thinking about own and others’ mental states (Tamir and 
Mitchell, 2010).

Limitations
The present results do not uniquely identify the causal direction 
underlying neural and attitudinal overlap as projective, i.e. ‘from’ 
self ‘to’ others. In many circumstances, simulation of others’ 
mental states might draw upon the same (or similar) processes 
involved in reflecting upon our own mental states (Waytz and 
Mitchell, 2011), especially for similar others (Woo and Mitchell, 
2020). However, in other contexts, representations of the self 
may be influenced by perceptions of others, especially superordi-
nate groups to which we belong (Turner et al., 1987). Attitudinal 
knowledge may thus be distributed across both general group 
representations (which include the self) as well as self-specific 
representations (Karniol, 2003). When the self is not distinctive, 
we may fall back upon group-based knowledge that applies to 
both self and others, yielding overlap. Moreover, it is not neces-
sary that overlapping representations in DMN (or other regions) 
mechanistically precede or cause attitudinal overlap; it is possible 
that overlapping neural representations coevolve with the align-
ment of attitudinal positions. Further research will be needed to 
determine whether changes to neural patterns associated with 
attitudinal overlap are antecedent or consequent to changes in 
attitudes. At present, we remain agnostic regarding the specific 
conditions during which own attitudes may inform perceptions 
of others’ attitudes and vice versa, and the causal mechanisms 
associated with the associated changes to self and other repre-
sentations in the patterns of DMN activity.

We emphasize again that, while consistent with default ego-
centrism, the results of the present study, in themselves, do not 
rule out the alternative possibility that individuals’ own attitudes 
are (chronically) informed by or based upon their perceptions of 
the attitudes of others (i.e. a default ‘allocentrism’). The results 
only demonstrate the common encoding of information involved 
in thinking about own and others’ attitudes. We take the existence 
of pervasive egocentrism in attitude perception as empirically 
well-substantiated and view the results as providing a plausible 
mechanism for this egocentrism, without meeting the higher bar 
of disconfirming alternatives. In the current study, we feel that 
egocentric projection is more likely than allocentric assimilation, 
for two principal reasons. First, we did not explicitly invoke group 
identity or manipulate situational factors that would be expected 
to prompt assimilation of own attitudes to others’ attitudes. Sec-
ond, participants’ estimates of others’ attitudes (relative to the 
true sample mean) exhibited the familiar error in favor of their 
own position (i.e. false consensus effect).

The fact that between-subjects classification analyses could 
generalize attitudinal information across participants has two 
important implications. First, DMN encoding of positive–negative 
attitude valence is at least somewhat consistent across per-
sons. Second, the features enabling classification probably do 
not reflect nuanced, idiosyncratic aspects of attitudinal positions 
but rather their common evaluative core. This loss of person-
specific attitudinal representations may account, in part, for 
the fact that Own Attitude classifications were not appreciably 
more accurate than Other Attitude classifications. Person-specific 
attitudinal representations should be a crucial target for future 
investigations, and such studies should employ a larger number 
of attitude items, within subjects, to facilitate the decoding of 
idiosyncratic attitude content. Moreover, our sample of young, 
mostly female undergraduates is perhaps more consistent in 
socio-political attitudes than a random sample of American par-
ticipants. Between-subject classifications may therefore be less 
successful with more diverse, heterogeneous samples. Future 
work will be needed to clarify which structural properties of social 
attitudes are consistent, and which vary, across individuals.

Conclusion
The present study contributes to the literature on similarities 
in mentalizing for self and others, revealing that the DMN 
encodes own and others’ attitudes using common information. 
It also provides neuroimaging evidence for a plausible account 
of own/other attitudinal overlap: our perception of attitudes is 
grounded in a naïve realism that prioritizes own attitudes. Default 
egocentrism in social cognition may thus be matched by a cor-
responding common encoding of own and others’ attitudes in 
the brain’s DMN. These findings provide a novel explanation of 
consensus bias in the perception of others’ attitudes and provide 
a starting point for future research, examining the ways these 
attitude representations change in response to social processes.
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